Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(1): 40-51.e5, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38171362

RESUMO

Individuals who clear primary hepatitis C virus (HCV) infections clear subsequent reinfections more than 80% of the time, but the mechanisms are poorly defined. Here, we used HCV variants and plasma from individuals with repeated clearance to characterize longitudinal changes in envelope glycoprotein E2 sequences, function, and neutralizing antibody (NAb) resistance. Clearance of infection was associated with early selection of viruses with NAb resistance substitutions that also reduced E2 binding to CD81, the primary HCV receptor. Later, peri-clearance plasma samples regained neutralizing capacity against these variants. We identified a subset of broadly NAbs (bNAbs) for which these loss-of-fitness substitutions conferred resistance to unmutated bNAb ancestors but increased sensitivity to mature bNAbs. These data demonstrate a mechanism by which neutralizing antibodies contribute to repeated immune-mediated HCV clearance, identifying specific bNAbs that exploit fundamental vulnerabilities in E2. The induction of bNAbs with these specificities should be a goal of HCV vaccine development.


Assuntos
Anticorpos Neutralizantes , Hepatite C , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-Hepatite C/química , Hepacivirus , Proteínas do Envelope Viral/genética
2.
Immunity ; 57(4): 890-903.e6, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518779

RESUMO

The early appearance of broadly neutralizing antibodies (bNAbs) in serum is associated with spontaneous hepatitis C virus (HCV) clearance, but to date, the majority of bNAbs have been isolated from chronically infected donors. Most of these bNAbs use the VH1-69 gene segment and target the envelope glycoprotein E2 front layer. Here, we performed longitudinal B cell receptor (BCR) repertoire analysis on an elite neutralizer who spontaneously cleared multiple HCV infections. We isolated 10,680 E2-reactive B cells, performed BCR sequencing, characterized monoclonal B cell cultures, and isolated bNAbs. In contrast to what has been seen in chronically infected donors, the bNAbs used a variety of VH genes and targeted at least three distinct E2 antigenic sites, including sites previously thought to be non-neutralizing. Diverse front-layer-reactive bNAb lineages evolved convergently, acquiring breadth-enhancing somatic mutations. These findings demonstrate that HCV clearance-associated bNAbs are genetically diverse and bind distinct antigenic sites that should be the target of vaccine-induced bNAbs.


Assuntos
Hepacivirus , Hepatite C , Humanos , Anticorpos Amplamente Neutralizantes , Epitopos , Anticorpos Neutralizantes , Proteínas do Envelope Viral/genética
3.
PLoS Pathog ; 18(1): e1010179, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990486

RESUMO

Antibodies targeting the hepatitis C virus (HCV) envelope glycoprotein E2 are associated with delayed disease progression, and these antibodies can also facilitate spontaneous clearance of infection in some individuals. However, many infected people demonstrate low titer and delayed anti-E2 antibody responses. Since a goal of HCV vaccine development is induction of high titers of anti-E2 antibodies, it is important to define the mechanisms underlying these suboptimal antibody responses. By staining lymphocytes with a cocktail of soluble E2 (sE2) glycoproteins, we detected HCV E2-specific (sE2+) B cells directly ex vivo at multiple acute infection timepoints in 29 HCV-infected subjects with a wide range of anti-E2 IgG titers, including 17 persistently infected subjects and 12 subjects with spontaneous clearance of infection. We performed multi-dimensional flow cytometric analysis of sE2+ and E2-nonspecific (sE2-) class-switched B cells (csBC). In sE2+ csBC from both persistence and clearance subjects, frequencies of resting memory B cells (rMBC) were reduced, frequencies of activated MBC (actMBC) and tissue-like MBC (tlMBC) were increased, and expression of FCRL5, an IgG receptor, was significantly upregulated. Across all subjects, plasma anti-E2 IgG levels were positively correlated with frequencies of sE2+ rMBC and sE2+ actMBC, while anti-E2 IgG levels were negatively correlated with levels of FCRL5 expression on sE2+ rMBC and PD-1 expression on sE2+ actMBC. Upregulation of FCRL5 on sE2+ rMBC and upregulation of PD-1 on sE2+ actMBC may limit anti-E2 antibody production in vivo. Strategies that limit upregulation of these molecules could potentially generate higher titers of protective antibodies against HCV or other pathogens.


Assuntos
Linfócitos B/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores Fc/imunologia , Hepacivirus/imunologia , Humanos , Proteínas do Envelope Viral/imunologia
4.
Clin Infect Dis ; 77(Suppl 3): S257-S261, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37579208

RESUMO

For any controlled human infection model (CHIM), a safe, standardized, and biologically relevant challenge inoculum is necessary. For hepatitis C virus (HCV) CHIM, we propose that human-derived high-titer inocula of several viral genotypes with extensive virologic, serologic, and molecular characterizations should be the most appropriate approach. These inocula should first be tested in human volunteers in a step-wise manner to ensure safety, reproducibility, and curability prior to using them for testing the efficacy of candidate vaccines.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Reprodutibilidade dos Testes
5.
Clin Infect Dis ; 74(8): 1419-1428, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-34272947

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants concerning for enhanced transmission, evasion of immune responses, or associated with severe disease have motivated the global increase in genomic surveillance. In the current study, large-scale whole-genome sequencing was performed between November 2020 and the end of March 2021 to provide a phylodynamic analysis of circulating variants over time. In addition, we compared the viral genomic features of March 2020 and March 2021. METHODS: A total of 1600 complete SARS-CoV-2 genomes were analyzed. Genomic analysis was associated with laboratory diagnostic volumes and positivity rates, in addition to an analysis of the association of selected variants of concern/variants of interest with disease severity and outcomes. Our real-time surveillance features a cohort of specimens from patients who tested positive for SARS-CoV-2 after completion of vaccination. RESULTS: Our data showed genomic diversity over time that was not limited to the spike sequence. A significant increase in the B.1.1.7 lineage (alpha variant) in March 2021 as well as a transient circulation of regional variants that carried both the concerning S: E484K and S: P681H substitutions were noted. Lineage B.1.243 was significantly associated with intensive care unit admission and mortality. Genomes recovered from fully vaccinated individuals represented the predominant lineages circulating at specimen collection time, and people with those infections recovered with no hospitalizations. CONCLUSIONS: Our results emphasize the importance of genomic surveillance coupled with laboratory, clinical, and metadata analysis for a better understanding of the dynamics of viral spread and evolution.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genoma Viral , Genômica/métodos , Humanos , SARS-CoV-2/genética
6.
Hepatology ; 74(4): 1782-1794, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34008172

RESUMO

BACKGROUND AND AIMS: Implementing effective interventions for HCV requires a detailed understanding of local transmission dynamics and geospatial spread. Little is known about HCV phylodynamics, particularly among high-burden populations, such as people who inject drugs (PWID). APPROACH AND RESULTS: We used 483 HCV sequences and detailed individual-level data from PWID across four Indian cities. Bayesian phylogeographic analyses were used to evaluate transmission hotspots and geospatial diffusion of the virus. Phylogenetic cluster analysis was performed to infer epidemiologic links and factors associated with clustering. A total of 492 HIV sequences were used to draw comparisons within the same population and, in the case of coinfections, evaluate molecular evidence for shared transmission pathways. Overall, 139/483 (28.8%) of HCV sequences clustered with a median cluster size of 3 individuals. Genetically linked participants with HCV were significantly younger and more likely to be infected with HCV subtype 3b as well as to live and inject close to one another. Phylogenetic evidence suggests likely ongoing HCV infection/reinfection with limited support for shared HIV/HCV transmission pathways. Phylogeographic analyses trace historic HCV spread back to Northeastern India and show diffusion patterns consistent with drug trafficking routes. CONCLUSIONS: This study characterizes HCV phylodynamics among PWID in a low and middle-income country setting. Heterogeneity and recent genetic linkage of HCV across geographically disparate Indian states suggest that targeted interventions could help prevent reimportation of virus through drug trafficking routes.


Assuntos
Infecções por HIV/transmissão , Hepacivirus/genética , Hepatite C/transmissão , Filogenia , Filogeografia , Reinfecção/transmissão , Abuso de Substâncias por Via Intravenosa/virologia , Adulto , Coinfecção , Tráfico de Drogas , Feminino , Infecções por HIV/epidemiologia , Hepatite C/epidemiologia , Hepatite C/virologia , Humanos , Índia/epidemiologia , Masculino , Reinfecção/virologia , Análise Espaço-Temporal , Abuso de Substâncias por Via Intravenosa/epidemiologia , Adulto Jovem
7.
Transpl Infect Dis ; 23(4): e13682, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34216086

RESUMO

End-organ cytomegalovirus (CMV) disease can be life threatening to solid organ transplant recipients. Diagnosis is often complicated by variation in amount of CMV DNA in plasma and the need for an invasive procedure to obtain a biopsy of the suspected affected organ, which can delay recognition and treatment. Several inflammatory cytokines are elevated in CMV disease, and the purpose of this study was to determine if they could be used to distinguish solid organ transplant recipients with CMV DNAemia alone from those with possible end-organ CMV disease. We found that regardless of pre-transplant CMV serostatus, plasma interleukin (IL)-18, tumor necrosis factor-α (TNF-α), and amount of CMV DNA in plasma were increased in possible end-organ CMV disease, with elevated IL-18 associated with increased odds of possible end-organ CMV disease even after adjusting for amount of CMV DNA. These findings highlight IL-18 and TNF-α as potential non-invasive markers of possible end-organ CMV disease regardless of transplanted organ or serostatus in solid organ transplant recipients.


Assuntos
Infecções por Citomegalovirus , Transplante de Órgãos , Antivirais/uso terapêutico , Citomegalovirus , Infecções por Citomegalovirus/tratamento farmacológico , Humanos , Interleucina-18/uso terapêutico , Transplante de Órgãos/efeitos adversos , Transplantados , Fator de Necrose Tumoral alfa
8.
BMC Public Health ; 21(1): 1002, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044799

RESUMO

BACKGROUND: Men in Sub-Saharan Africa are less engaged than women in accessing HIV testing and treatment and, consequently, experience higher HIV-related mortality. Reaching men with HIV testing services is challenging, thus, increasing the need for innovative ways to engage men with low access and those at higher risk. In this study, we explore men's perceptions of drivers and barriers of workplace-based HIV self-testing in Uganda. METHODS: An exploratory study involving men working in private security companies employing more than 50 men in two districts, in central and western Uganda. Focus group discussions and key informant interviews were conducted. Data were analyzed using inductive content analysis. RESULTS: Forty-eight (48) men from eight private security companies participated in 5 focus group discussions and 17 key informant interviews. Of the 48 men, 14(29.2%) were ages 26-35 years. The majority 31(64.6%) were security guards. The drivers reported for workplace-based HIV self-testing included convenience, autonomy, positive influence from work colleagues, the need for alternative access for HIV testing services, incentives, and involvement of employers. The barriers reported were the prohibitive cost of HIV tests, stigma, lack of testing support, the fear of discrimination and isolation, and concerns around decreased work productivity in the event of a reactive self-test. CONCLUSIONS: We recommend the involvement of employers in workplace-based HIV self-testing to encourage participation by employees. There is need for HIV self-testing support both during and after the testing process. Both employers and employees recommend the use of non-monetary incentives, and regular training about HIV self-testing to increase the uptake and acceptability of HIV testing services at the workplace.


Assuntos
Infecções por HIV , Local de Trabalho , Adulto , África Subsaariana , Feminino , Infecções por HIV/diagnóstico , Humanos , Masculino , Pesquisa Qualitativa , Autoteste , Uganda
9.
Proc Natl Acad Sci U S A ; 115(1): E82-E91, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255018

RESUMO

There is an urgent need for a vaccine to combat the hepatitis C virus (HCV) pandemic, and induction of broadly neutralizing monoclonal antibodies (bNAbs) against HCV is a major goal of vaccine development. Even within HCV genotype 1, no single bNAb effectively neutralizes all viral strains, so induction of multiple neutralizing monoclonal antibodies (NAbs) targeting distinct epitopes may be necessary for protective immunity. Therefore, identification of optimal NAb combinations and characterization of NAb interactions can guide vaccine development. We analyzed neutralization profiles of 12 human NAbs across diverse HCV strains, assigning the NAbs to two functionally distinct clusters. We then measured neutralizing breadth of 35 NAb combinations against genotype 1 isolates, with each combination including one NAb from each neutralization cluster. Many NAbs displayed complementary neutralizing breadth, forming combinations with greater neutralization across diverse strains than any individual bNAb. Remarkably, one of the most broadly neutralizing combinations of two NAbs, designated HEPC74/HEPC98, also displayed enhanced potency, with interactions matching the Bliss independence model, suggesting that these NAbs inhibit HCV infection through independent mechanisms. Subsequent experiments showed that HEPC74 primarily blocks HCV envelope protein binding to CD81, while HEPC98 primarily blocks binding to scavenger receptor B1 and heparan sulfate. Together, these data identify a critical vulnerability resulting from the reliance of HCV on multiple cell surface receptors, suggesting that vaccine induction of multiple NAbs with distinct neutralization profiles is likely to enhance the breadth and potency of the humoral immune response against HCV.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite/imunologia , Hepatite C/imunologia , Células HEK293 , Hepatite C/prevenção & controle , Humanos , Vacinas contra Hepatite Viral/imunologia
10.
Proc Natl Acad Sci U S A ; 115(11): E2575-E2584, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483265

RESUMO

The latent reservoir for HIV-1 in resting CD4+ T cells is a major barrier to cure. Several lines of evidence suggest that the latent reservoir is maintained through cellular proliferation. Analysis of this proliferative process is complicated by the fact that most infected cells carry defective proviruses. Additional complications are that stimuli that drive T cell proliferation can also induce virus production from latently infected cells and productively infected cells have a short in vivo half-life. In this ex vivo study, we show that latently infected cells containing replication-competent HIV-1 can proliferate in response to T cell receptor agonists or cytokines that are known to induce homeostatic proliferation and that this can occur without virus production. Some cells that have proliferated in response to these stimuli can survive for 7 d while retaining the ability to produce virus. This finding supports the hypothesis that both antigen-driven and cytokine-induced proliferation may contribute to the stability of the latent reservoir. Sequencing of replication-competent proviruses isolated from patients at different time points confirmed the presence of expanded clones and demonstrated that while some clones harboring replication-competent virus persist longitudinally on a scale of years, others wax and wane. A similar pattern is observed in longitudinal sampling of residual viremia in patients. The observed patterns are not consistent with a continuous, cell-autonomous, proliferative process related to the HIV-1 integration site. The fact that the latent reservoir can be maintained, in part, by cellular proliferation without viral reactivation poses challenges to cure.


Assuntos
Linfócitos T CD4-Positivos , Proliferação de Células/fisiologia , Infecções por HIV , HIV-1 , Interações Hospedeiro-Patógeno , Latência Viral/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , HIV-1/patogenicidade , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Filogenia , Provírus/fisiologia , Fatores de Tempo , Viremia/virologia , Replicação Viral/fisiologia
11.
BMC Infect Dis ; 20(1): 815, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167892

RESUMO

BACKGROUND: The availability of effective, oral direct acting antivirals (DAAs) for hepatitis C virus (HCV) treatment has put elimination of HCV as a public health challenge within reach. However, little is known about the characteristics of transmission networks of people who inject drugs (PWID). METHODS: Sequencing of a segment of the HCV genome was performed on samples collected from a community-based cohort of PWID between August 2005 and December 2016. Phylogenetic trees were inferred, and clusters were identified (70% bootstrap threshold; 0.04 maximum genetic distance threshold). We describe sex, race, age difference, and HIV infection status of potential transmission partners. Logistic regression was used to assess factors associated with being in an HCV cluster. RESULTS: Of 508 HCV genotype 1 viremic PWID, 8% (n = 41) were grouped into 20 clusters, consisting of 19 pairs and 1 triad. In adjusted analyses, female sex (odds ratio [OR] 2.3 [95% confidence interval (CI) 1.2-4.5]) and HIV infection (OR 5.7 [CI 2.7-11.9]) remained independently associated with being in an HCV infection cluster. CONCLUSIONS: Molecular epidemiological analysis reveals that, in this cohort of PWID in Baltimore, HIV infection and female sex were associated with HCV clustering. Combination HCV prevention interventions targeting HIV infected PWID and addressing HCV infection prevention needs of women have potential to advance HCV elimination efforts.


Assuntos
Infecções por HIV/epidemiologia , HIV/genética , Hepacivirus/genética , Hepatite C/epidemiologia , Filogenia , Abuso de Substâncias por Via Intravenosa/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Antivirais/uso terapêutico , Baltimore/epidemiologia , Análise por Conglomerados , Feminino , Seguimentos , Genótipo , Infecções por HIV/transmissão , Infecções por HIV/virologia , Hepatite C/transmissão , Hepatite C/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Fatores Sexuais , Parceiros Sexuais , Viremia/epidemiologia
12.
PLoS Pathog ; 13(2): e1006235, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28235087

RESUMO

Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 µg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.


Assuntos
Anticorpos Neutralizantes/imunologia , Hepacivirus/genética , Anticorpos Anti-Hepatite C/imunologia , Evasão da Resposta Imune/imunologia , Polimorfismo Genético , Receptores Depuradores Classe B/metabolismo , Algoritmos , Sequência de Aminoácidos , Ensaio de Imunoadsorção Enzimática , Hepacivirus/imunologia , Hepacivirus/metabolismo , Hepatite C/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutagênese Sítio-Dirigida , Testes de Neutralização , Filogenia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
14.
Analyst ; 143(11): 2596-2603, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29741175

RESUMO

Clinical laboratory-based nucleic acid amplification tests (NAT) play an important role in diagnosing viral infections. However, laboratory infrastructure requirements and their failure to diagnose at the point-of-need (PON) limit their clinical utility in both resource-rich and -limited clinical settings. The development of fast and sensitive PON viral NAT may overcome these limitations. The scalability of silicon microchip manufacturing combined with advances in silicon microfluidics present an opportunity for development of rapid and sensitive PON NAT on silicon microchips. In the present study, we present rapid and sensitive NAT for a number of RNA and DNA viruses on the same silicon microchip platform. We first developed sensitive (4 copies per reaction) one-step RT-qPCR and qPCR assays detecting HCV, HIV, Zika, HPV 16, and HPV 18 on a benchtop real-time PCR instrument. A silicon microchip was designed with an etched 1.3 µL meandering microreactor, integrated aluminum heaters, thermal insulation trenches and microfluidic channels; this chip was used in all on-chip experiments. Melting curve analysis confirmed precise and localized heating of the microreactor. Following minimal optimization of reaction conditions, the bench-scale assays were successfully transferred to 1.3 µL silicon microreactors with reaction times of 25 min with no reduction in sensitivity, reproducibility, or reaction efficiencies. Taken together, these results demonstrate that rapid and sensitive detection of multiple viruses on the same silicon microchip platform is feasible. Further development of this technology, coupled with silicon microchip-based nucleic acid extraction solutions, could potentially shift viral nucleic acid detection and diagnosis from centralized clinical laboratories to the PON.


Assuntos
DNA Viral/análise , Técnicas Analíticas Microfluídicas , RNA Viral/análise , Silício , Técnicas de Amplificação de Ácido Nucleico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
J Virol ; 90(7): 3773-82, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26819308

RESUMO

UNLABELLED: Hepatitis C virus (HCV) infection is a global health problem, with millions of chronically infected individuals at risk for cirrhosis and hepatocellular carcinoma. HCV vaccine development is vital in the effort toward disease control and eradication, an undertaking aided by an increased understanding of the mechanisms of resistance to broadly neutralizing antibodies (bNAbs). In this study, we identified HCV codons that vary deep in a phylogenetic tree of HCV sequences and showed that a polymorphism at one of these positions renders Bole1a, a computationally derived, ancestral genotype 1a HCV strain, resistant to neutralization by both polyclonal-HCV-infected plasma and multiple broadly neutralizing monoclonal antibodies with unique binding epitopes. This bNAb resistance mutation reduces replicative fitness, which may explain the persistence of both neutralization-sensitive and neutralization-resistant variants in circulating viral strains. This work identifies an important determinant of bNAb resistance in an ancestral, representative HCV genome, which may inform HCV vaccine development. IMPORTANCE: Worldwide, more than 170 million people are infected with hepatitis C virus (HCV), the leading cause of hepatocellular carcinoma and liver transplantation in the United States. Despite recent significant advances in HCV treatment, a vaccine is needed. Control of the HCV pandemic with drug treatment alone is likely to fail due to limited access to treatment, reinfections in high-risk individuals, and the potential for resistance to direct-acting antivirals (DAAs). Broadly neutralizing antibodies (bNAbs) block infection by diverse HCV variants and therefore serve as a useful guide for vaccine development, but our understanding of resistance to bNAbs is incomplete. In this report, we identify a viral polymorphism conferring resistance to neutralization by both polyclonal plasma and broadly neutralizing monoclonal antibodies, which may inform HCV vaccine development.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Produtos do Gene env/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Polimorfismo Genético , Produtos do Gene env/genética , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Evasão da Resposta Imune , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Replicação Viral
18.
J Gen Virol ; 97(11): 2883-2893, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27667373

RESUMO

A better understanding of natural variation in neutralization resistance and fitness of diverse hepatitis C virus (HCV) envelope (E1E2) variants will be critical to guide rational development of an HCV vaccine. This work has been hindered by inadequate genetic diversity in viral panels and by a lack of standardization of HCV entry assays. Neutralization assays generally use lentiviral pseudoparticles expressing HCV envelope proteins (HCVpp) or chimeric full-length viruses that are replication competent in cell culture (HCVcc). There have been few systematic comparisons of specific infectivities of E1E2-matched HCVcc and HCVpp, and to our knowledge, neutralization of E1E2-matched HCVpp and HCVcc has never been compared using a diverse panel of human broadly neutralizing monoclonal antibodies (bNAbs) targeting distinct epitopes. Here, we describe an efficient method for introduction of naturally occurring E1E2 genes into a full-length HCV genome, producing replication-competent chimeric HCVcc. We generated diverse panels of E1E2-matched HCVcc and HCVpp and measured the entry-mediating fitness of E1E2 variants using the two systems. We also compared neutralization of E1E2-matched HCVcc and HCVpp by a diverse panel of human bNAbs targeting epitopes across E1E2. We found no correlation between specific infectivities of E1E2-matched HCVcc versus HCVpp, but found a very strong positive correlation between relative neutralization resistance of these same E1E2-matched HCVcc and HCVpp variants. These results suggest that quantitative comparisons of neutralization resistance of E1E2 variants can be made with confidence using either HCVcc or HCVpp, allowing the use of either or both systems to maximize diversity of neutralization panels.


Assuntos
Anticorpos Neutralizantes/farmacologia , Hepacivirus/efeitos dos fármacos , Anticorpos Anti-Hepatite C/farmacologia , Replicação Viral/efeitos dos fármacos , Anticorpos Neutralizantes/imunologia , Hepacivirus/imunologia , Hepacivirus/fisiologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Testes de Neutralização , Proteínas do Envelope Viral/imunologia
19.
J Virol ; 89(18): 9454-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26157120

RESUMO

UNLABELLED: Plasma microRNAs (miRNAs) change in abundance in response to disease and have been associated with liver fibrosis severity in chronic hepatitis C virus (HCV) infection. However, the early dynamics of miRNA release during acute HCV infection are poorly understood. In addition, circulating miRNA signatures have been difficult to reproduce among separate populations. We studied plasma miRNA abundance during acute HCV infection to identify an miRNA signature of early infection. We measured 754 plasma miRNAs by quantitative PCR array in a discovery cohort of 22 individuals before and during acute HCV infection and after spontaneous resolution (n = 11) or persistence (n = 11) to identify a plasma miRNA signature. The discovery cohort derived from the Baltimore Before and After Acute Study of Hepatitis. During acute HCV infection, increases in miR-122 (P < 0.01) and miR-885-5p (Pcorrected < 0.05) and a decrease in miR-494 (Pcorrected < 0.05) were observed at the earliest time points after virus detection. Changes in miR-122 and miR-885-5p were sustained in persistent (P < 0.001) but not resolved HCV infection. The circulating miRNA signature of acute HCV infection was confirmed in a separate validation cohort that was derived from the San Francisco-based You Find Out (UFO) Study (n = 28). As further confirmation, cellular changes of signature miRNAs were examined in a tissue culture model of HCV in hepatoma cells: HCV infection induced extracellular release of miR-122 and miR-885-5p despite unperturbed intracellular levels. In contrast, miR-494 accumulated intracellularly (P < 0.05). Collectively, these data are inconsistent with necrolytic release of hepatocyte miRNAs into the plasma during acute HCV infection of humans. IMPORTANCE: MicroRNAs are small noncoding RNA molecules that emerging research shows can transmit regulatory signals between cells in health and disease. HCV infects 2% of humans worldwide, and chronic HCV infection is a major cause of severe liver disease. We profiled plasma miRNAs in injection drug users before, during, and (in the people with resolution) after HCV infection. We discovered miRNA signatures of acute and persistent viremia and confirmed these findings two ways: (i) in a separate cohort of people with newly acquired HCV infection and (ii) in an HCV cell culture system. Our results demonstrate that acute HCV infection induces early changes in the abundance of specific plasma miRNAs that may affect the host response to HCV infection.


Assuntos
Hepacivirus , Hepatite C/sangue , Hepatócitos/metabolismo , MicroRNAs/sangue , Doença Aguda , Adulto , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Masculino
20.
J Virol ; 89(16): 8206-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018161

RESUMO

UNLABELLED: Human herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are large-genome DNA viruses that establish a persistent infection in sensory neurons and commonly manifest with recurring oral or genital erosions that transmit virus. HSV encodes 12 predicted glycoproteins that serve various functions, including cellular attachment, entry, and egress. Glycoprotein G is currently the target of an antibody test to differentiate HSV-1 from HSV-2; however, this test has shown reduced capacity to differentiate HSV strains in East Africa. Until the recent availability of 26 full-length HSV-1 and 36 full-length HSV-2 sequences, minimal comparative information was available for these viruses. In this study, we use a variety of sequence analysis methods to compare all available sequence data for HSV-1 and HSV-2 glycoproteins, using viruses isolated in Europe, Asia, North America, the Republic of South Africa, and East Africa. We found numerous differences in diversity, nonsynonymous/synonymous substitution rates, and recombination rates between HSV-1 glycoproteins and their HSV-2 counterparts. Phylogenetic analysis revealed that while most global HSV-2 glycoprotein G sequences did not form clusters within or between continents, one clade (supported at 60.5%) contained 37% of the African sequences analyzed. Accordingly, sequences from this African subset contained unique amino acid signatures, not only in glycoprotein G, but also in glycoproteins I and E, which may account for the failure of sensitive antibody tests to distinguish HSV-1 from HSV-2 in some African individuals. Consensus sequences generated in the study can be used to improve diagnostic assays that differentiate HSV-1 from HSV-2 in global populations. IMPORTANCE: Human herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are large DNA viruses associated with recurring oral or genital erosions that transmit virus. Up to 12 HSV-1 and HSV-2 glycoproteins are involved in HSV cell entry or are required for viral spread in animals, albeit some are dispensable for replication in vitro. The recent availability of comparable numbers of full-length HSV-1 and HSV-2 sequences enabled comparative analysis of gene diversity of glycoproteins within and between HSV types. Overall, we found less glycoprotein sequence diversity within HSV-2 than within the HSV-1 strains studied, while at the same time, several HSV-2 glycoproteins were evolving under less selective pressure. Because HSV glycoproteins are the focus of antibody tests to detect and differentiate between infections with the two strains and are constituents of vaccines in clinical-stage development, these findings will aid in refining the targets for diagnostic tests and vaccines.


Assuntos
Glicoproteínas/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 2/metabolismo , Proteínas Virais/metabolismo , Animais , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA