Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2311049121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319973

RESUMO

Intrathecal synthesis of central nervous system (CNS)-reactive autoantibodies is observed across patients with autoimmune encephalitis (AE), who show multiple residual neurobehavioral deficits and relapses despite immunotherapies. We leveraged two common forms of AE, mediated by leucine-rich glioma inactivated-1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies, as human models to comprehensively reconstruct and profile cerebrospinal fluid (CSF) B cell receptor (BCR) characteristics. We hypothesized that the resultant observations would both inform the observed therapeutic gap and determine the contribution of intrathecal maturation to pathogenic B cell lineages. From the CSF of three patients, 381 cognate-paired IgG BCRs were isolated by cell sorting and scRNA-seq, and 166 expressed as monoclonal antibodies (mAbs). Sixty-two percent of mAbs from singleton BCRs reacted with either LGI1 or CASPR2 and, strikingly, this rose to 100% of cells in clonal groups with ≥4 members. These autoantigen-reactivities were more concentrated within antibody-secreting cells (ASCs) versus B cells (P < 0.0001), and both these cell types were more differentiated than LGI1- and CASPR2-unreactive counterparts. Despite greater differentiation, autoantigen-reactive cells had acquired few mutations intrathecally and showed minimal variation in autoantigen affinities within clonal expansions. Also, limited CSF T cell receptor clonality was observed. In contrast, a comparison of germline-encoded BCRs versus the founder intrathecal clone revealed marked gains in both affinity and mutational distances (P = 0.004 and P < 0.0001, respectively). Taken together, in patients with LGI1 and CASPR2 antibody encephalitis, our results identify CSF as a compartment with a remarkably high frequency of clonally expanded autoantigen-reactive ASCs whose BCR maturity appears dominantly acquired outside the CNS.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalite , Glioma , Doença de Hashimoto , Humanos , Leucina , Peptídeos e Proteínas de Sinalização Intracelular , Recidiva Local de Neoplasia , Autoanticorpos , Autoantígenos
2.
Nucleic Acids Res ; 52(D1): D545-D551, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971316

RESUMO

Antibodies are key proteins of the adaptive immune system, and there exists a large body of academic literature and patents dedicated to their study and concomitant conversion into therapeutics, diagnostics, or reagents. These documents often contain extensive functional characterisations of the sets of antibodies they describe. However, leveraging these heterogeneous reports, for example to offer insights into the properties of query antibodies of interest, is currently challenging as there is no central repository through which this wide corpus can be mined by sequence or structure. Here, we present PLAbDab (the Patent and Literature Antibody Database), a self-updating repository containing over 150,000 paired antibody sequences and 3D structural models, of which over 65 000 are unique. We describe the methods used to extract, filter, pair, and model the antibodies in PLAbDab, and showcase how PLAbDab can be searched by sequence, structure, or keyword. PLAbDab uses include annotating query antibodies with potential antigen information from similar entries, analysing structural models of existing antibodies to identify modifications that could improve their properties, and facilitating the compilation of bespoke datasets of antibody sequences/structures that bind to a specific antigen. PLAbDab is freely available via Github (https://github.com/oxpig/PLAbDab) and as a searchable webserver (https://opig.stats.ox.ac.uk/webapps/plabdab/).


Assuntos
Anticorpos , Bases de Dados Factuais , Anticorpos/química , Anticorpos/genética , Antígenos/metabolismo , Modelos Moleculares , Patentes como Assunto , Internet
3.
Nucleic Acids Res ; 50(D1): D1368-D1372, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986602

RESUMO

In 2013, we released the Structural Antibody Database (SAbDab), a publicly available repository of experimentally determined antibody structures. In the interim, the rapid increase in the number of antibody structure depositions to the Protein Data Bank, driven primarily by increased interest in antibodies as biotherapeutics, has led us to implement several improvements to the original database infrastructure. These include the development of SAbDab-nano, a sub-database that tracks nanobodies (heavy chain-only antibodies) which have seen a particular growth in attention from both the academic and pharmaceutical research communities over the past few years. Both SAbDab and SAbDab-nano are updated weekly, comprehensively annotated with the latest features described here, and are freely accessible at opig.stats.ox.ac.uk/webapps/newsabdab/.


Assuntos
Anticorpos/genética , Bases de Dados Genéticas , Anticorpos de Domínio Único/genética , Software , Anticorpos/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/uso terapêutico
4.
Bioinformatics ; 37(5): 734-735, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32805021

RESUMO

MOTIVATION: The emergence of a novel strain of betacoronavirus, SARS-CoV-2, has led to a pandemic that has been associated with over 700 000 deaths as of August 5, 2020. Research is ongoing around the world to create vaccines and therapies to minimize rates of disease spread and mortality. Crucial to these efforts are molecular characterizations of neutralizing antibodies to SARS-CoV-2. Such antibodies would be valuable for measuring vaccine efficacy, diagnosing exposure and developing effective biotherapeutics. Here, we describe our new database, CoV-AbDab, which already contains data on over 1400 published/patented antibodies and nanobodies known to bind to at least one betacoronavirus. This database is the first consolidation of antibodies known to bind SARS-CoV-2 as well as other betacoronaviruses such as SARS-CoV-1 and MERS-CoV. It contains relevant metadata including evidence of cross-neutralization, antibody/nanobody origin, full variable domain sequence (where available) and germline assignments, epitope region, links to relevant PDB entries, homology models and source literature. RESULTS: On August 5, 2020, CoV-AbDab referenced sequence information on 1402 anti-coronavirus antibodies and nanobodies, spanning 66 papers and 21 patents. Of these, 1131 bind to SARS-CoV-2. AVAILABILITYAND IMPLEMENTATION: CoV-AbDab is free to access and download without registration at http://opig.stats.ox.ac.uk/webapps/coronavirus. Community submissions are encouraged. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
5.
PLoS Comput Biol ; 17(12): e1009675, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898603

RESUMO

Identifying the epitope of an antibody is a key step in understanding its function and its potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with similar epitope complementarity, however, antibodies from markedly different lineages but with similar structures can engage the same epitope. We describe a novel computational method for epitope profiling based on structural modelling and clustering. Using the method, we demonstrate that sequence dissimilar but functionally similar antibodies can be found across the Coronavirus Antibody Database, with high accuracy (92% of antibodies in multiple-occupancy structural clusters bind to consistent domains). Our approach functionally links antibodies with distinct genetic lineages, species origins, and coronavirus specificities. This indicates greater convergence exists in the immune responses to coronaviruses than is suggested by sequence-based approaches. Our results show that applying structural analytics to large class-specific antibody databases will enable high confidence structure-function relationships to be drawn, yielding new opportunities to identify functional convergence hitherto missed by sequence-only analysis.


Assuntos
Antígenos Virais/química , COVID-19/imunologia , COVID-19/virologia , Epitopos de Linfócito B/química , SARS-CoV-2/química , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/genética , Reações Antígeno-Anticorpo/genética , Reações Antígeno-Anticorpo/imunologia , Biologia Computacional , Coronavirus/química , Coronavirus/genética , Coronavirus/imunologia , Bases de Dados de Compostos Químicos , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Humanos , Camundongos , Modelos Moleculares , Pandemias , SARS-CoV-2/genética , Anticorpos de Domínio Único/imunologia
6.
PLoS Comput Biol ; 17(3): e1008781, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33647011

RESUMO

The naïve antibody/B-cell receptor (BCR) repertoires of different individuals ought to exhibit significant functional commonality, given that most pathogens trigger an effective antibody response to immunodominant epitopes. Sequence-based repertoire analysis has so far offered little evidence for this phenomenon. For example, a recent study estimated the number of shared ('public') antibody clonotypes in circulating baseline repertoires to be around 0.02% across ten unrelated individuals. However, to engage the same epitope, antibodies only require a similar binding site structure and the presence of key paratope interactions, which can occur even when their sequences are dissimilar. Here, we search for evidence of geometric similarity/convergence across human antibody repertoires. We first structurally profile naïve ('baseline') antibody diversity using snapshots from 41 unrelated individuals, predicting all modellable distinct structures within each repertoire. This analysis uncovers a high (much greater than random) degree of structural commonality. For instance, around 3% of distinct structures are common to the ten most diverse individual samples ('Public Baseline' structures). Our approach is the first computational method to find levels of BCR commonality commensurate with epitope immunodominance and could therefore be harnessed to find more genetically distant antibodies with same-epitope complementarity. We then apply the same structural profiling approach to repertoire snapshots from three individuals before and after flu vaccination, detecting a convergent structural drift indicative of recognising similar epitopes ('Public Response' structures). We show that Antibody Model Libraries derived from Public Baseline and Public Response structures represent a powerful geometric basis set of low-immunogenicity candidates exploitable for general or target-focused therapeutic antibody screening.


Assuntos
Anticorpos , Diversidade de Anticorpos , Linfócitos B , Bases de Dados Genéticas , Epitopos Imunodominantes , Linfócitos B/química , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biologia Computacional , Humanos
7.
Nucleic Acids Res ; 48(D1): D383-D388, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31555805

RESUMO

The Therapeutic Structural Antibody Database (Thera-SAbDab; http://opig.stats.ox.ac.uk/webapps/therasabdab) tracks all antibody- and nanobody-related therapeutics recognized by the World Health Organisation (WHO), and identifies any corresponding structures in the Structural Antibody Database (SAbDab) with near-exact or exact variable domain sequence matches. Thera-SAbDab is synchronized with SAbDab to update weekly, reflecting new Protein Data Bank entries and the availability of new sequence data published by the WHO. Each therapeutic summary page lists structural coverage (with links to the appropriate SAbDab entries), alignments showing where any near-matches deviate in sequence, and accompanying metadata, such as intended target and investigated conditions. Thera-SAbDab can be queried by therapeutic name, by a combination of metadata, or by variable domain sequence - returning all therapeutics that are within a specified sequence identity over a specified region of the query. The sequences of all therapeutics listed in Thera-SAbDab (461 unique molecules, as of 5 August 2019) are downloadable as a single file with accompanying metadata.


Assuntos
Anticorpos/química , Anticorpos/uso terapêutico , Anticorpos/imunologia , Ensaios Clínicos como Assunto , Bases de Dados de Proteínas , Humanos , Internet , Metadados , Alinhamento de Sequência , Interface Usuário-Computador
8.
Proc Natl Acad Sci U S A ; 116(10): 4025-4030, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765520

RESUMO

Therapeutic mAbs must not only bind to their target but must also be free from "developability issues" such as poor stability or high levels of aggregation. While small-molecule drug discovery benefits from Lipinski's rule of five to guide the selection of molecules with appropriate biophysical properties, there is currently no in silico analog for antibody design. Here, we model the variable domain structures of a large set of post-phase-I clinical-stage antibody therapeutics (CSTs) and calculate in silico metrics to estimate their typical properties. In each case, we contextualize the CST distribution against a snapshot of the human antibody gene repertoire. We describe guideline values for five metrics thought to be implicated in poor developability: the total length of the complementarity-determining regions (CDRs), the extent and magnitude of surface hydrophobicity, positive charge and negative charge in the CDRs, and asymmetry in the net heavy- and light-chain surface charges. The guideline cutoffs for each property were derived from the values seen in CSTs, and a flagging system is proposed to identify nonconforming candidates. On two mAb drug discovery sets, we were able to selectively highlight sequences with developability issues. We make available the Therapeutic Antibody Profiler (TAP), a computational tool that builds downloadable homology models of variable domain sequences, tests them against our five developability guidelines, and reports potential sequence liabilities and canonical forms. TAP is freely available at opig.stats.ox.ac.uk/webapps/sabdab-sabpred/TAP.php.


Assuntos
Regiões Determinantes de Complementaridade , Simulação por Computador , Modelos Moleculares , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Descoberta de Drogas , Humanos
9.
PLoS Comput Biol ; 16(2): e1007636, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32069281

RESUMO

Most current analysis tools for antibody next-generation sequencing data work with primary sequence descriptors, leaving accompanying structural information unharnessed. We have used novel rapid methods to structurally characterize the complementary-determining regions (CDRs) of more than 180 million human and mouse B-cell receptor (BCR) repertoire sequences. These structurally annotated CDRs provide unprecedented insights into both the structural predetermination and dynamics of the adaptive immune response. We show that B-cell types can be distinguished based solely on these structural properties. Antigen-unexperienced BCR repertoires use the highest number and diversity of CDR structures and these patterns of naïve repertoire paratope usage are highly conserved across subjects. In contrast, more differentiated B-cells are more personalized in terms of CDR structure usage. Our results establish the CDR structure differences in BCR repertoires and have applications for many fields including immunodiagnostics, phage display library generation, and "humanness" assessment of BCR repertoires from transgenic animals. The software tool for structural annotation of BCR repertoires, SAAB+, is available at https://github.com/oxpig/saab_plus.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular , Receptores de Antígenos de Linfócitos B/metabolismo , Imunidade Adaptativa , Animais , Animais Geneticamente Modificados , Anticorpos , Linfócitos B/citologia , Análise por Conglomerados , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulina G/química , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , Receptores de Antígenos de Linfócitos B/genética , Software
10.
Front Immunol ; 15: 1399438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812514

RESUMO

To be viable therapeutics, antibodies must be tolerated by the human immune system. Rational approaches to reduce the risk of unwanted immunogenicity involve maximizing the 'humanness' of the candidate drug. However, despite the emergence of new discovery technologies, many of which start from entirely human gene fragments, most antibody therapeutics continue to be derived from non-human sources with concomitant humanization to increase their human compatibility. Early experimental humanization strategies that focus on CDR loop grafting onto human frameworks have been critical to the dominance of this discovery route but do not consider the context of each antibody sequence, impacting their success rate. Other challenges include the simultaneous optimization of other drug-like properties alongside humanness and the humanization of fundamentally non-human modalities such as nanobodies. Significant efforts have been made to develop in silico methodologies able to address these issues, most recently incorporating machine learning techniques. Here, we outline these recent advancements in antibody and nanobody humanization, focusing on computational strategies that make use of the increasing volume of sequence and structural data available and the validation of these tools. We highlight that structural distinctions between antibodies and nanobodies make the application of antibody-focused in silico tools to nanobody humanization non-trivial. Furthermore, we discuss the effects of humanizing mutations on other essential drug-like properties such as binding affinity and developability, and methods that aim to tackle this multi-parameter optimization problem.


Assuntos
Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Animais , Biologia Computacional/métodos , Anticorpos/imunologia , Anticorpos/química
11.
Commun Biol ; 7(1): 62, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191620

RESUMO

Antibodies with lambda light chains (λ-antibodies) are generally considered to be less developable than those with kappa light chains (κ-antibodies). Though this hypothesis has not been formally established, it has led to substantial systematic biases in drug discovery pipelines and thus contributed to kappa dominance amongst clinical-stage therapeutics. However, the identification of increasing numbers of epitopes preferentially engaged by λ-antibodies shows there is a functional cost to neglecting to consider them as potential lead candidates. Here, we update our Therapeutic Antibody Profiler (TAP) tool to use the latest data and machine learning-based structure prediction, and apply it to evaluate developability risk profiles for κ-antibodies and λ-antibodies based on their surface physicochemical properties. We find that while human λ-antibodies on average have a higher risk of developability issues than κ-antibodies, a sizeable proportion are assigned lower-risk profiles by TAP and should represent more tractable candidates for therapeutic development. Through a comparative analysis of the low- and high-risk populations, we highlight opportunities for strategic design that TAP suggests would enrich for more developable λ-antibodies. Overall, we provide context to the differing developability of κ- and λ-antibodies, enabling a rational approach to incorporate more diversity into the initial pool of immunotherapeutic candidates.


Assuntos
Anticorpos , Descoberta de Drogas , Humanos , Anticorpos/uso terapêutico , Epitopos , Aprendizado de Máquina , Propriedades de Superfície
12.
Front Mol Biosci ; 10: 1237621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790877

RESUMO

The function of an antibody is intrinsically linked to the epitope it engages. Clonal clustering methods, based on sequence identity, are commonly used to group antibodies that will bind to the same epitope. However, such methods neglect the fact that antibodies with highly diverse sequences can exhibit similar binding site geometries and engage common epitopes. In a previous study, we described SPACE1, a method that structurally clustered antibodies in order to predict their epitopes. This methodology was limited by the inaccuracies and incomplete coverage of template-based modeling. In addition, it was only benchmarked at the level of domain-consistency on one virus class. Here, we present SPACE2, which uses the latest machine learning-based structure prediction technology combined with a novel clustering protocol, and benchmark it on binding data that have epitope-level resolution. On six diverse sets of antigen-specific antibodies, we demonstrate that SPACE2 accurately clusters antibodies that engage common epitopes and achieves far higher dataset coverage than clonal clustering and SPACE1. Furthermore, we show that the functionally consistent structural clusters identified by SPACE2 are even more diverse in sequence, genetic lineage, and species origin than those found by SPACE1. These results reiterate that structural data improve our ability to identify antibodies that bind to the same epitope, adding information to sequence-based methods, especially in datasets of antibodies from diverse sources. SPACE2 is openly available on GitHub (https://github.com/oxpig/SPACE2).

13.
Methods Mol Biol ; 2313: 115-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34478133

RESUMO

The need to consider an antibody's "developability" (immunogenicity, solubility, specificity, stability, manufacturability, and storability) is now well understood in therapeutic antibody design. Predicting these properties rapidly and inexpensively is critical to industrial workflows, to avoid devoting resources to non-productive candidates. Here, we describe a high-throughput computational developability assessment tool, the Therapeutic Antibody Profiler (TAP), which assesses the physicochemical "druglikeness" of an antibody candidate. Input variable domain sequences are converted to three-dimensional structural models, and then five developability-linked molecular surface descriptors are calculated and compared to advanced-stage clinical therapeutics. Values at the extremes of/outside of the distributions seen in therapeutics imply an increased risk of developability issues. Therefore, TAP, starting only from sequence information, provides a route to rapidly identifying drug candidate antibodies that are likely to have poor developability. Our web application ( opig.stats.ox.ac.uk/webapps/tap ) profiles input antibody sequences against a continually updated reference set of clinical therapeutics.


Assuntos
Anticorpos/uso terapêutico , Software , Anticorpos Monoclonais , Solubilidade , Fluxo de Trabalho
14.
Front Immunol ; 13: 1080596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700202

RESUMO

T-cell receptor-mimetic antibodies (TCRms) targeting disease-associated peptides presented by Major Histocompatibility Complexes (pMHCs) are set to become a major new drug modality. However, we lack a general understanding of how TCRms engage pMHC targets, which is crucial for predicting their specificity and safety. Several new structures of TCRm:pMHC complexes have become available in the past year, providing sufficient initial data for a holistic analysis of TCRms as a class of pMHC binding agents. Here, we profile the complete set of TCRm:pMHC complexes against representative TCR:pMHC complexes to quantify the TCR-likeness of their pMHC engagement. We find that intrinsic molecular differences between antibodies and TCRs lead to fundamentally different roles for their heavy/light chains and Complementarity-Determining Region loops during antigen recognition. The idiotypic properties of antibodies may increase the likelihood of TCRms engaging pMHCs with less peptide selectivity than TCRs. However, the pMHC recognition features of some TCRms, including the two TCRms currently in clinical trials, can be remarkably TCR-like. The insights gained from this study will aid in the rational design and optimisation of next-generation TCRms.


Assuntos
Peptídeos , Receptores de Antígenos de Linfócitos T , Regiões Determinantes de Complementaridade/química , Antígenos de Histocompatibilidade , Complexo Principal de Histocompatibilidade , Anticorpos
15.
MAbs ; 13(1): 1996732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34781829

RESUMO

Convergence across B-cell receptor (BCR) and antibody repertoires has become instrumental in prioritizing candidates in recent rapid therapeutic antibody discovery campaigns. It has also increased our understanding of the immune system, providing evidence for the preferential selection of BCRs to particular (immunodominant) epitopes post vaccination/infection. These important implications for both drug discovery and immunology mean that it is essential to consider the optimal way to combine experimental and computational technology when probing BCR repertoires for convergence signatures. Here, we discuss the theoretical basis for observing BCR repertoire functional convergence and explore factors of study design that can impact functional signal. We also review the computational arsenal available to detect antibodies with similar functional properties, highlighting opportunities enabled by recent clustering algorithms that exploit structural similarities between BCRs. Finally, we suggest future areas of development that should increase the power of BCR repertoire functional clustering.


Assuntos
Anticorpos , Receptores de Antígenos de Linfócitos B , Receptores de Antígenos de Linfócitos B/genética
16.
Front Immunol ; 11: 605170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384691

RESUMO

Deep sequencing of B cell receptor (BCR) heavy chains from a cohort of 31 COVID-19 patients from the UK reveals a stereotypical naive immune response to SARS-CoV-2 which is consistent across patients. Clonal expansion of the B cell population is also observed and may be the result of memory bystander effects. There was a strong convergent sequence signature across patients, and we identified 1,254 clonotypes convergent between at least four of the COVID-19 patients, but not present in healthy controls or individuals following seasonal influenza vaccination. A subset of the convergent clonotypes were homologous to known SARS and SARS-CoV-2 spike protein neutralizing antibodies. Convergence was also demonstrated across wide geographies by comparison of data sets between patients from UK, USA, and China, further validating the disease association and consistency of the stereotypical immune response even at the sequence level. These convergent clonotypes provide a resource to identify potential therapeutic and prophylactic antibodies and demonstrate the potential of BCR profiling as a tool to help understand patient responses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/patologia , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfopenia/imunologia , Masculino , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia
17.
MAbs ; 11(7): 1197-1205, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31216939

RESUMO

Recently it has become possible to query the great diversity of natural antibody repertoires using next-generation sequencing (NGS). These methods are capable of producing millions of sequences in a single experiment. Here we compare clinical-stage therapeutic antibodies to the ~1b sequences from 60 independent sequencing studies in the Observed Antibody Space database, which includes antibody sequences from NGS analysis of immunoglobulin gene repertoires. Of 242 post-Phase 1 antibodies, we found 16 with sequence identity matches of 95% or better for both heavy and light chains. There are also 54 perfect matches to therapeutic CDR-H3 regions in the NGS outputs, suggesting a nontrivial amount of convergence between naturally observed sequences and those developed artificially. This has potential implications for both the legal protection of commercial antibodies and the discovery of antibody therapeutics.


Assuntos
Regiões Determinantes de Complementaridade/genética , Imunoglobulinas/genética , Imunoterapia/métodos , Mineração de Dados , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Humoral , Imunoglobulinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA