Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36611415

RESUMO

Colorectal Cancer is one of the most common cancers found in human beings, and polyps are the predecessor of this cancer. Accurate Computer-Aided polyp detection and segmentation system can help endoscopists to detect abnormal tissues and polyps during colonoscopy examination, thereby reducing the chance of polyps growing into cancer. Many of the existing techniques fail to delineate the polyps accurately and produce a noisy/broken output map if the shape and size of the polyp are irregular or small. We propose an end-to-end pixel-wise polyp segmentation model named Guided Attention Residual Network (GAR-Net) by combining the power of both residual blocks and attention mechanisms to obtain a refined continuous segmentation map. An enhanced Residual Block is proposed that suppresses the noise and captures low-level feature maps, thereby facilitating information flow for a more accurate semantic segmentation. We propose a special learning technique with a novel attention mechanism called Guided Attention Learning that can capture the refined attention maps both in earlier and deeper layers regardless of the size and shape of the polyp. To study the effectiveness of the proposed GAR-Net, various experiments were carried out on two benchmark collections viz., CVC-ClinicDB (CVC-612) and Kvasir-SEG dataset. From the experimental evaluations, it is shown that GAR-Net outperforms other previously proposed models such as FCN8, SegNet, U-Net, U-Net with Gated Attention, ResUNet, and DeepLabv3. Our proposed model achieves 91% Dice co-efficient and 83.12% mean Intersection over Union (mIoU) on the benchmark CVC-ClinicDB (CVC-612) dataset and 89.15% dice co-efficient and 81.58% mean Intersection over Union (mIoU) on the Kvasir-SEG dataset. The proposed GAR-Net model provides a robust solution for polyp segmentation from colonoscopy video frames.

3.
Biomed Eng Lett ; 11(1): 3-13, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33747599

RESUMO

Precise delineation of the ischemic lesion from unimodal Magnetic Resonance Imaging (MRI) is a challenging task due to the subtle intensity difference between the lesion and normal tissues. Hence, multispectral MRI modalities are used for characterizing the properties of brain tissues. Traditional lesion detection methods rely on extracting significant hand-engineered features to differentiate normal and abnormal brain tissues. But the identification of those discriminating features is quite complex, as the degree of differentiation varies according to each modality. This can be addressed well by Convolutional Neural Networks (CNN) which supports automatic feature extraction. It is capable of learning the global features from images effectively for image classification. But it loses the context of local information among the pixels that need to be retained for segmentation. Also, it must provide more emphasis on the features of the lesion region for precise reconstruction. The major contribution of this work is the integration of attention mechanism with a Fully Convolutional Network (FCN) to segment ischemic lesion. This attention model is applied to learn and concentrate only on salient features of the lesion region by suppressing the details of other regions. Hence the proposed FCN with attention mechanism was able to segment ischemic lesion of varying size and shape. To study the effectiveness of attention mechanism, various experiments were carried out on ISLES 2015 dataset and a mean dice coefficient of 0.7535 was obtained. Experimental results indicate that there is an improvement of 5% compared to the existing works.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA