Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 814: 151925, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34838923

RESUMO

Despite substantial advances in quantifying greenhouse gas (GHG) emissions from dry inland waters, existing estimates mainly consist of carbon dioxide (CO2) emissions. However, methane (CH4) may also be relevant due to its higher Global Warming Potential (GWP). We report CH4 emissions from dry inland water sediments to i) provide a cross-continental estimate of such emissions for different types of aquatic systems (i.e., lakes, ponds, reservoirs, and streams) and climate zones (i.e., tropical, continental, and temperate); and ii) determine the environmental factors that control these emissions. CH4 emissions from dry inland waters were consistently higher than emissions observed in adjacent uphill soils, across climate zones and in all aquatic systems except for streams. However, the CH4 contribution (normalized to CO2 equivalents; CO2-eq) to the total GHG emissions of dry inland waters was similar for all types of aquatic systems and varied from 10 to 21%. Although we discuss multiple controlling factors, dry inland water CH4 emissions were most strongly related to sediment organic matter content and moisture. Summing CO2 and CH4 emissions revealed a cross-continental average emission of 9.6 ± 17.4 g CO2-eq m-2 d-1 from dry inland waters. We argue that increasing droughts likely expand the worldwide surface area of atmosphere-exposed aquatic sediments, thereby increasing global dry inland water CH4 emissions. Hence, CH4 cannot be ignored if we want to fully understand the carbon (C) cycle of dry sediments.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Lagos , Metano/análise , Óxido Nitroso/análise , Rios
2.
PLoS One ; 13(3): e0194032, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29538468

RESUMO

Understanding the relationships between Coffea arabica L. and the native tree community of secondary forests regrowing after the abandonment of coffee plantations is important because, as a non-native species in the Neotropics, coffee can outcompete native species, reducing diversity and forests ecosystem services. We aimed to answer three questions: 1) Does coffee regeneration in secondary forests differ between shaded and unshaded abandoned plantations?; 2) How is coffee basal area related to structural attributes, species diversity and composition of the native community?; and 3) Do the relationships between coffee and native community differ between tree and sapling components? We sampled the tree and sapling components in a seasonal tropical dry forest that were previously used as shaded and unshaded coffee plantations. Coffee was the most important species in the sapling component of shaded systems, but was almost absent in unshaded ones. Coffee basal area was negatively related with the native density and absolute species richness of the sapling component; and was negatively related with tree density, and positively related with the percentage of pioneer individuals of the native tree component. Our results indicate that coffee persists in secondary forest communities even after more than 70 years of shaded-coffee plantations were abandoned, potentially reducing density and diversity of native species. Despite limitations, which hinder more general conclusions on coffee invasiveness in Brazilian secondary tropical forests, our results indicate that coffee is a strong competitor in the studied secondary forests and provide important insights for future research on this topic.


Assuntos
Coffea/crescimento & desenvolvimento , Coffea/fisiologia , Agricultura/métodos , Biodiversidade , Brasil , Conservação dos Recursos Naturais/métodos , Ecossistema , Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA