Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 129, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472514

RESUMO

Recent work putatively linked a rare genetic variant of the chaperone Resistant to Inhibitors of acetylcholinesterase (RIC3) (NM_024557.4:c.262G > A, NP_078833.3:p.G88R) to a unique ability to speak backwards, a language skill that is associated with exceptional working memory capacity. RIC3 is important for the folding, maturation, and functional expression of α7 nicotinic acetylcholine receptors (nAChR). We compared and contrasted the effects of RIC3G88R on assembly, cell surface expression, and function of human α7 receptors using fluorescent protein tagged α7 nAChR and Förster resonance energy transfer (FRET) microscopy imaging in combination with functional assays and 125I-α-bungarotoxin binding. As expected, the wild-type RIC3 protein was found to increase both cell surface and functional expression of α7 receptors. In contrast, the variant form of RIC3 decreased both. FRET analysis showed that RICG88R increased the interactions between RIC3 and α7 protein in the endoplasmic reticulum. These results provide interesting and novel data to show that a RIC3 variant alters the interaction of RIC3 and α7, which translates to decreased cell surface and functional expression of α7 nAChR.


Assuntos
Receptores Nicotínicos , Humanos , Acetilcolinesterase/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Membrana Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Nicotínicos/genética , Fala
2.
Nat Commun ; 15(1): 6960, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138209

RESUMO

Leishmania species, members of the kinetoplastid parasites, cause leishmaniasis, a neglected tropical disease, in millions of people worldwide. Leishmania has a complex life cycle with multiple developmental forms, as it cycles between a sand fly vector and a mammalian host; understanding their life cycle is critical to understanding disease spread. One of the key life cycle stages is the haptomonad form, which attaches to insect tissues through its flagellum. This adhesion, conserved across kinetoplastid parasites, is implicated in having an important function within their life cycles and hence in disease transmission. Here, we discover the kinetoplastid-insect adhesion proteins (KIAPs), which localise in the attached Leishmania flagellum. Deletion of these KIAPs impairs cell adhesion in vitro and prevents Leishmania from colonising the stomodeal valve in the sand fly, without affecting cell growth. Additionally, loss of parasite adhesion in the sand fly results in reduced physiological changes to the fly, with no observable damage of the stomodeal valve and reduced midgut swelling. These results provide important insights into a comprehensive understanding of the Leishmania life cycle, which will be critical for developing transmission-blocking strategies.


Assuntos
Flagelos , Leishmania , Psychodidae , Animais , Leishmania/fisiologia , Leishmania/genética , Leishmania/metabolismo , Psychodidae/parasitologia , Flagelos/metabolismo , Adesão Celular , Insetos Vetores/parasitologia , Interações Hospedeiro-Parasita , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Estágios do Ciclo de Vida , Leishmaniose/parasitologia , Leishmaniose/transmissão , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA