Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 151(4): 953-965, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36395984

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (N-ERD) is currently classified as a type-2 (T2) immune-mediated disease characterized by asthma, chronic rhinosinusitis, and hypersensitivity to cyclooxygenase-1 inhibitors. OBJECTIVES: The aim of this study was to characterize immunological endotypes of N-ERD based on the gene expression profile in the bronchial epithelium. METHODS: mRNA transcriptome (mRNA-sequencing) was analyzed in bronchial brushings from patients with N-ERD (n = 22), those with nonsteroidal anti-inflammatory drug-tolerant asthma (NTA, n = 21), and control subjects (n = 11). Additionally, lipid and protein mediators were measured in bronchoalveolar lavage fluid (BALF). RESULTS: Initial analysis of the entire asthma group revealed 2 distinct gene expression signatures: "T2-high" with increased expression of T2-related genes (eg, CLCA1, CST1), and "proinflammatory" characterized by the expression of innate immunity (eg, FOSB, EGR3) and IL-17A response genes. These endotypes showed similar prevalence in N-ERD and NTA (eg, T2-high: 33% and 32%, respectively). T2-high asthma was characterized by increased expression of mast cell and eosinophil markers, goblet cell hyperplasia, and elevated LTE4 and PGD2 in BALF. Patients with a proinflammatory endotype showed mainly neutrophilic inflammation and increased innate immunity mediators in BALF. Furthermore, the proinflammatory signature was associated with a more severe course of asthma and marked airway obstruction. These signatures could be recreated in vitro by exposure of bronchial epithelial cells to IL-13 (T2-high) and IL-17A (proinflammatory). CONCLUSIONS: T2-high signature was found only in one-third of patients with N-ERD, which was similar to what was found in patients with NTA. The proinflammatory endotype, which also occurred in N-ERD, suggests a novel mechanism of severe disease developing on a non-T2 background.


Assuntos
Asma , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Transcriptoma , Interleucina-17/genética , Anti-Inflamatórios não Esteroides/efeitos adversos , Asma/genética , Células Epiteliais
2.
J Allergy Clin Immunol ; 149(1): 212-222.e9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153371

RESUMO

BACKGROUND: Allergoid-mannan conjugates are novel vaccines for allergen-specific immunotherapy being currently assayed in phase 2 clinical trials. Allergoid-mannan conjugates target dendritic cells (DCs) and generate functional forkhead box P3 (FOXP3)-positive Treg cells, but their capacity to reprogram monocyte differentiation remains unknown. OBJECTIVE: We studied whether allergoid-mannan conjugates could reprogram monocyte differentiation into tolerogenic DCs and the underlying molecular mechanisms. METHODS: Monocytes from nonatopic and allergic subjects were differentiated into DCs under conventional protocols in the absence or presence of allergoid-mannan conjugates. ELISA, real-time quantitative PCR, coculture, flow cytometry, and suppression assay were performed. Metabolic and epigenetic techniques were also used. RESULTS: Monocyte differentiation from nonatopic and allergic subjects into DCs in the presence of allergoid-mannan conjugates yields stable tolerogenic DCs. Lipopolysaccharide-stimulated mannan-tolDCs show a significantly lower cytokine production, lower TNF-α/IL-10 ratio, and higher expression of the tolerogenic molecules PDL1, IDO, SOCS1, SOCS3, and IL10; and they induce higher numbers of functional FOXP3+ Treg cells than conventional DC counterparts. Mannan-tolDCs shift glucose metabolism from Warburg effect and lactate production to mitochondrial oxidative phosphorylation. They also display epigenetic reprogramming involving specific histone marks within tolerogenic loci and lower expression levels of histone deacetylase genes. Mannan-tolDCs significantly increase the expression of the anti-inflammatory miRNA-146a/b and decrease proinflammatory miRNA-155. CONCLUSIONS: Allergoid-mannan conjugates reprogram monocyte differentiation into stable tolerogenic DCs via epigenetic and metabolic reprogramming. Our findings shed light on the novel mechanisms by which allergoid-mannan conjugates might contribute to allergen tolerance induction during allergen-specific immunotherapy.


Assuntos
Alergoides/farmacologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Mananas/farmacologia , Monócitos/efeitos dos fármacos , Adulto , Antígenos de Plantas , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Epigênese Genética , Feminino , Humanos , Tolerância Imunológica , Lipopolissacarídeos/farmacologia , Masculino , Monócitos/citologia , Phleum , Pólen
3.
J Allergy Clin Immunol ; 147(4): 1269-1280, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32810516

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (N-ERD) asthma is characterized by chronic rhinosinusitis and intolerance of aspirin and other COX1 inhibitors. Clinical data point to a heterogeneity within the N-ERD phenotype. OBJECTIVE: Our aim was to investigate immune mediator profiles in the lower airways of patients with N-ERD. METHODS: Levels of cytokines (determined by using Luminex assay) and eicosanoids (determined by using mass spectrometry) were measured in bronchoalveolar lavage fluid (BALF) from patients with N-ERD (n = 22), patients with NSAID-tolerant asthma (n = 21), and control subjects (n = 11). mRNA expression in BALF cells was quantified by using TaqMan low-density arrays. RESULTS: Lower airway eosinophilia was more frequent in N-ERD (54.5%) than in NSAID-tolerant asthma (9.5% [P = .009]). The type-2 (T2) immune signature of BALF cells was more pronounced in the eosinophilic subphenotype of N-ERD. Similarly, BALF concentrations of periostin and CCL26 were significantly increased in eosinophilic N-ERD and correlated with T2 signature in BALF cells. Multiparameter analysis of BALF mediators of all patients with asthma revealed the presence of 2 immune endotypes: T2-like (with an elevated level of periostin in BALF) and non-T2/proinflammatory (with higher levels of matrix metalloproteinases and inflammatory cytokines). Patients with N-ERD were classified mostly as having the T2 endotype (68%). Changes in eicosanoid profile (eg, increased leukotriene E4 level) were limited to patients with N-ERD with airway eosinophilia. Blood eosinophilia appeared to be a useful predictor of airway T2 signature (area under the curve [AUC] = 0.83); however, surrogate biomarkers had moderate performance in distinguishing eosinophilic N-ERD (for blood eosinophils, AUC = 0.72; for periostin, AUC = 0.75). CONCLUSIONS: Lower airway immune profiles show considerable heterogeneity of N-ERD, with skewing toward T2 response and eosinophilic inflammation. Increased production of leukotriene E4 was restricted to a subgroup of patients with eosinophilia in the lower airway.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Asma/imunologia , Eosinofilia/imunologia , Rinite/imunologia , Sinusite/imunologia , Adulto , Idoso , Aspirina/efeitos adversos , Biomarcadores , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Eosinófilos/imunologia , Feminino , Humanos , Inflamação/imunologia , Leucotrieno E4/imunologia , Masculino , Pessoa de Meia-Idade , Lavagem Nasal , Neutrófilos/imunologia
4.
Allergy ; 76(6): 1661-1678, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33128813

RESUMO

In past 10 years, microRNAs (miRNAs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases and their potential as biomarkers in liquid biopsies. They act as master post-transcriptional regulators that control most cellular processes. As one miRNA can target several mRNAs, often within the same pathway, dysregulated expression of miRNAs may alter particular cellular responses and contribute, or lead, to the development of various diseases. In this review, we give an overview of the current research on miRNAs in allergic diseases, including atopic dermatitis, allergic rhinitis, and asthma. Specifically, we discuss how individual miRNAs function in the regulation of immune responses in epithelial cells and specialized immune cells in response to different environmental factors and respiratory viruses. In addition, we review insights obtained from experiments with murine models of allergic airway and skin inflammation and offer an overview of studies focusing on miRNA discovery using profiling techniques and bioinformatic modeling of the network effect of multiple miRNAs. In conclusion, we highlight the importance of research into miRNA function in allergy and asthma to improve our knowledge of the molecular mechanisms involved in the pathogenesis of this heterogeneous group of diseases.


Assuntos
Asma , Dermatite Atópica , MicroRNAs , Rinite Alérgica , Animais , Asma/genética , Camundongos , MicroRNAs/genética , Sistema Respiratório , Rinite Alérgica/genética
5.
Exp Dermatol ; 29(1): 51-60, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630447

RESUMO

Psoriasis is a chronic inflammatory skin disease with numerous involved factors. miR-146a and miR-146b (miR-146a/b) are anti-inflammatory miRNAs that are increased in psoriatic skin. SERPINB2 has been shown to be upregulated in the inflammation and infections. Here we aimed to study the relationship between miR-146a/b and SERPINB2 and to delineate the role of SERPINB2 in association of plaque psoriasis. We report increased SERPINB2 expression in the skin of psoriasis patients, which was in a positive relationship with psoriasis severity and in a negative relationship with miR-146a/b in psoriatic lesions. In cultured keratinocytes, both cellular and secreted SERPINB2 levels were strongly induced in response to IFN-γ and TNF-α. Interestingly, SERPINB2 mRNA was downregulated by IL-17A and the combination of TNF-α and IL-17A at time points when miR-146a was increased. The predicted binding site for miR-146a/b in 3' untranslated region of SERPINB2 revealed no activity in luciferase assay, while siRNA silencing of miR-146a/b direct targets IRAK1 and CARD10 resulted in reduced expression of SERPINB2, suggesting that miR-146a/b indirectly control SERPINB2 expression in the skin. The siRNA silencing of SERPINB2 increased the expression of IL-8, CXCL5 and CCL5 and migration of neutrophils revealing its anti-inflammatory role in keratinocytes. Our data together suggest that SERPINB2 and miR-146a/b are part of disease-related network of molecules that are coordinately regulated and act in controlling the inflammatory responses in psoriatic skin.


Assuntos
MicroRNAs/genética , Psoríase/genética , Psoríase/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Estudos de Casos e Controles , Movimento Celular , Células Cultivadas , Quimiocina CCL5/metabolismo , Quimiocina CXCL5/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inativação Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Interferon gama/farmacologia , Quinases Associadas a Receptores de Interleucina-1/genética , Interleucina-17/farmacologia , Interleucina-8/metabolismo , Queratinócitos/metabolismo , MicroRNAs/metabolismo , Neutrófilos/fisiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos
6.
Allergy ; 74(11): 2146-2156, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31049964

RESUMO

BACKGROUND: miR-10a-5p has been shown to regulate cancer cell proliferation and invasiveness and endothelial cell inflammatory responses. The function of miR-10a-5p in the skin has not been previously studied. The aim of the current study was to examine miR-10a-5p expression, regulation, and function in keratinocytes (KCs) in association with atopic dermatitis (AD). METHODS: The expression of miR-10a-5p and its target genes was analyzed using RT-qPCR, mRNA array analysis, in situ hybridization, and immunofluorescence. The transfection of miRNA mimics, cell cycle distribution analysis, and luciferase assays was used to study miR-10a-5p functions in human primary KCs. RESULTS: miR-10a-5p was found to be upregulated in lesional skin from patients with AD and in proliferating KCs. Array and pathway analysis of IL-1ß-stimulated KCs revealed that miR-10a-5p inhibited many genes that affect cell cycle progression and only a few inflammation-related genes. Accordingly, fewer cells in S-phase and reduced proliferation were detected as characteristics of miR-10a-5p-transfected KCs. The influence of miR-10a-5p on cell proliferation was also evident in KCs induced by AD-related cytokines, including IL-4, IL-17, and IL-1ß, as measured by the capacity to strongly suppress the expression of the proliferation marker Ki-67. Among AD-related putative direct target genes, we verified hyaluronan synthase 3, a damage-associated positive regulator of KC migration and proliferation, as a direct target of miR-10a-5p. CONCLUSIONS: miR-10a-5p inhibits KC proliferation and directly targets hyaluronan synthase 3 and thereby may modulate AD-associated processes in the skin.


Assuntos
Dermatite Atópica/etiologia , Dermatite Atópica/metabolismo , Regulação da Expressão Gênica , Queratinócitos/metabolismo , MicroRNAs/genética , Interferência de RNA , Adulto , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Citocinas/metabolismo , Dermatite Atópica/patologia , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Pele/imunologia , Pele/metabolismo , Pele/patologia , Adulto Jovem
7.
J Allergy Clin Immunol ; 142(1): 178-194.e11, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28939410

RESUMO

BACKGROUND: Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate-like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. OBJECTIVE: We aimed to investigate the ILC3-B-cell interaction that probably takes place in human tonsils. METHODS: ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. RESULTS: A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL-15 production in B cells through B cell-activating factor receptor, whereas IL-15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL-15-activated CD40L+ ILC3s helped B-cell survival, proliferation, and differentiation of IL-10-secreting, PD-L1-expressing functional itBreg cells in a CD40L- and B cell-activating factor receptor-dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. CONCLUSION: Human CD40L+ ILC3s provide innate B-cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases.


Assuntos
Linfócitos B Reguladores/imunologia , Interleucina-10/biossíntese , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Tonsila Palatina/imunologia , Asma/imunologia , Linfócitos B Reguladores/metabolismo , Ligante de CD40/biossíntese , Diferenciação Celular/imunologia , Humanos , Hipersensibilidade Imediata/imunologia , Imunidade Inata/imunologia , Linfócitos/metabolismo , Tonsila Palatina/citologia , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo
8.
Cancer Cell Int ; 17: 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184177

RESUMO

BACKGROUND: Human basonuclin 2 (BNC2) acts as a tumor suppressor in multiple cancers in an as yet unidentified manner. The role and expression of the BNC2 gene in lung cancer has not yet been investigated. METHODS: BNC2 expression was studied in the A549 and BEAS-2B cell lines, as well as in lung cancer tissue. Illumina array analysis and a viability assay were used to study the effects of transient transfection of BNC2 in A549 cells. Ingenuity pathway analysis and g:Profiler were applied to identify affected pathways and networks. RT-qPCR was used to validate the array results. RESULTS: We showed the reduced mRNA expression of BNC2 in non-small cell lung cancer tissue and lung cancer cell line A549 compared to non-cancerous lung tissue and BEAS-2B cells, respectively. Further array analysis demonstrated that the transfection of BNC2 into A549 cells resulted in the increased expression of 139 genes and the down-regulation of 13 genes. Pathway analysis revealed that half of the up-regulated genes were from the interferon/signal transducer and activator of transcription signaling pathways. The differential expression of selected sets of genes, including interferon-stimulated and tumor suppressor genes of the XAF1 and OAS families, was confirmed by RT-qPCR. In addition, we showed that the over-expression of BNC2 inhibited the proliferation of A549 cells. CONCLUSION: Our data suggest that human BNC2 is an activator of a subset of IFN-regulated genes and might thereby act as a tumor suppressor.

9.
J Allergy Clin Immunol ; 138(4): 984-1010, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27577879

RESUMO

There have been extensive developments on cellular and molecular mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections during the last few years. Better understanding the functions, reciprocal regulation, and counterbalance of subsets of immune and inflammatory cells that interact through interleukins, interferons, TNF-α, and TGF-ß offer opportunities for immune interventions and novel treatment modalities in the era of development of biological immune response modifiers particularly targeting these molecules or their receptors. More than 60 cytokines have been designated as interleukins since the initial discoveries of monocyte and lymphocyte interleukins (called IL-1 and IL-2, respectively). Studies of transgenic or gene-deficient mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided essential information about their functions. Here we review recent developments on IL-1 to IL-38, TNF-α, TGF-ß, and interferons. We highlight recent advances during the last few years in this area and extensively discuss their cellular sources, targets, receptors, signaling pathways, and roles in immune regulation in patients with allergy and asthma and other inflammatory diseases.


Assuntos
Doenças do Sistema Imunitário , Interferons/fisiologia , Interleucinas/fisiologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Humanos
10.
Acta Derm Venereol ; 96(6): 742-7, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-26941046

RESUMO

Little is known about the functions of microRNAs (miRNAs) in skin pigmentation disorders. The aim of this study was to investigate the expression and potential role of miRNAs in vitiligo. Of 12 studied miRNAs with proven functions in cell proliferation, differentiation, immune responses and melanogenesis, miR-99b, miR-125b, miR-155 and miR-199a-3p were found to be increased and miR-145 was found to be decreased in the skin of patients with vitiligo. Combined pathway and target analysis revealed melanogenesis-associated targets for miR-99b, miR-125b, miR-155 and miR-199a-3p. In situ hybridization analysis demonstrated increased expression of miR-155 in the epidermis of patients with vitiligo. Correspondingly, miR-155 was induced by vitiligo-associated cytokines in human primary melanocytes and keratinocytes. When overexpressed, miR-155 inhibited the expression of melanogenesis-associated genes and altered interferon-regulated genes in melanocytes and keratinocytes. In conclusion, this study demonstrates that the expression of miRNAs is dysregulated in the skin of patients with vitiligo and suggests that miR-155 contributes to the pathogenesis of vitiligo.


Assuntos
Queratinócitos/metabolismo , Melanócitos/metabolismo , MicroRNAs/metabolismo , Vitiligo/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Humanos , Hibridização In Situ , Reação em Cadeia da Polimerase em Tempo Real , Vitiligo/patologia
11.
Biochem Biophys Res Commun ; 468(4): 913-20, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607109

RESUMO

Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/metabolismo , DNA/química , DNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Ligação Proteica , Relação Estrutura-Atividade , Proteína AIRE
12.
Adv Exp Med Biol ; 888: 331-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26663191

RESUMO

Allergy is a common hypersensitivity disorder of the immune system, which, along with other factors, is also subjected to regulation by microRNAs. The most common allergic diseases are allergic rhinitis, asthma, atopic dermatitis, and food allergy, which all are multifactorial and very heterogeneous conditions, highlighting the need for more individualized treatment techniques. More particular key questions in relation to allergic diseases are how microRNAs influence the differentiation, polarization, plasticity and functions of T helper and other immune cells, as well as the development of immune tolerance. In addition, microRNAs can affect allergic inflammation and tissue remodeling through their functions in epithelial and other tissue cells. Among immune system-related microRNAs, miR-21, miR-146a, and miR-155 are the most intensively studied and have convincingly been demonstrated to regulate immune responses and tissue inflammation in allergic diseases. Further characterization of microRNA functions is important, as similar to other conditions, the modulation of microRNA expression could potentially be used for therapeutic purposes in allergic diseases in the future. In addition, miRNAs could be implemented as biomarkers for endotyping complex allergic conditions.


Assuntos
Regulação da Expressão Gênica/genética , Hipersensibilidade/genética , Sistema Imunitário/metabolismo , MicroRNAs/genética , Asma/genética , Asma/imunologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Hipersensibilidade Alimentar/genética , Hipersensibilidade Alimentar/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Sistema Imunitário/imunologia , Inflamação/genética , Inflamação/imunologia , Modelos Genéticos , Modelos Imunológicos , Rinite Alérgica/genética , Rinite Alérgica/imunologia
13.
J Allergy Clin Immunol ; 134(4): 836-847.e11, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24996260

RESUMO

BACKGROUND: Chronic skin inflammation in atopic dermatitis (AD) is associated with elevated expression of proinflammatory genes and activation of innate immune responses in keratinocytes. microRNAs (miRNAs) are short, single-stranded RNA molecules that silence genes via the degradation of target mRNAs or inhibition of translation. OBJECTIVE: The aim of this study was to investigate the role of miR-146a in skin inflammation in AD. METHODS: RNA and protein expression was analyzed using miRNA and mRNA arrays, RT-quantitative PCR, Western blotting, and immunonohistochemistry. Transfection of miR-146a precursors and inhibitors into human primary keratinocytes, luciferase assays, and MC903-dependent mouse model of AD were used to study miR-146a function. RESULTS: We show that miR-146a expression is increased in keratinocytes and chronic lesional skin of patients with AD. miR-146a inhibited the expression of numerous proinflammatory factors, including IFN-γ-inducible and AD-associated genes CCL5, CCL8, and ubiquitin D (UBD) in human primary keratinocytes stimulated with IFN-γ, TNF-α, or IL-1ß. In a mouse model of AD, miR-146a-deficient mice developed stronger inflammation characterized by increased accumulation of infiltrating cells in the dermis, elevated expression of IFN-γ, CCL5, CCL8, and UBD in the skin, and IFN-γ, IL-1ß, and UBD in draining lymph nodes. Both tissue culture and in vivo experiments in mice demonstrated that miR-146a-mediated suppression in allergic skin inflammation partially occurs through direct targeting of upstream nuclear factor kappa B signal transducers caspase recruitment domain-containing protein 10 and IL-1 receptor-associated kinase 1. In addition, human CCL5 was determined as a novel, direct target of miR-146a. CONCLUSION: Our data demonstrate that miR-146a controls nuclear factor kappa B-dependent inflammatory responses in keratinocytes and chronic skin inflammation in AD.


Assuntos
Dermatite Atópica/genética , Queratinócitos/imunologia , MicroRNAs/fisiologia , NF-kappa B/metabolismo , Interferência de RNA , Pele/imunologia , Animais , Calcitriol/administração & dosagem , Calcitriol/análogos & derivados , Movimento Celular/genética , Células Cultivadas , Doença Crônica , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/imunologia , Modelos Animais de Doenças , Humanos , Imunidade Inata , Terapia de Imunossupressão , Inflamação/genética , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , NF-kappa B/genética , Interferência de RNA/imunologia , Transdução de Sinais/genética , Pele/patologia , Regulação para Cima
14.
Curr Allergy Asthma Rep ; 14(4): 424, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24504527

RESUMO

microRNAs (miRNAs) are short, single-stranded RNA molecules that function together with the partner proteins and cause degradation of target mRNAs or inhibit their translation. A particular miRNA can have hundreds of targets; therefore, miRNAs cumulatively influence the expression of a large proportion of genes. The functions of miRNAs in human diseases have been studied since their discovery in mammalian cells approximately 12 years ago. However, the role of miRNAs in allergic disease has only very recently begun to be uncovered. The purpose of this review is to provide an overview of the functions of miRNAs involved in the development of allergic diseases. We describe here the functions of miRNAs that regulate Th2 polarization and influence general inflammatory and tissue responses. In addition, we will highlight findings about the functions of extracellular miRNAs as possible noninvasive biomarkers of diseases with heterogeneous phenotypes and complex mechanisms and briefly discuss advances in the development of miRNA-based therapeutics.


Assuntos
Asma/imunologia , Hipersensibilidade/imunologia , MicroRNAs/fisiologia , Animais , Humanos
15.
J Allergy Clin Immunol ; 132(1): 15-26, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23726263

RESUMO

Regulation of inflammatory responses is ensured by coordinated control of gene expression in participating immune system and tissue cells. One group of gene expression regulators, the functions of which have recently been started to be uncovered in relation to any type of inflammatory condition, is a class of short single-stranded RNA molecules termed microRNAs (miRNAs). miRNAs function together with partner proteins and mainly cause gene silencing through degradation of target mRNAs or inhibition of translation. A particular miRNA can have hundreds of target genes, and thereby miRNAs together influence the expression of a large proportion of proteins. The role of miRNAs in the immune system has been extensively studied since the discovery of miRNAs in mammalian cells approximately 10 years ago. The purpose of the current review is to provide an overview on the functions of miRNAs in the regulation of inflammation, with a specific focus on the mechanisms of allergic inflammation. Because recent studies clearly demonstrate the presence of extracellular miRNAs in body fluids and propose the involvement of miRNAs in cell-cell communication, we will also highlight findings about functions of extracellular miRNAs. The possible use of miRNAs as biomarkers, as well as miRNA-related novel treatment modalities, might open a new future for the diagnosis and treatment of many inflammatory conditions, including allergic diseases.


Assuntos
Inflamação/etiologia , MicroRNAs/fisiologia , Imunidade Adaptativa , Animais , Polaridade Celular , Citocinas/biossíntese , Dermatite Atópica/imunologia , Humanos , Hipersensibilidade/imunologia , Imunidade Inata , Receptores de Antígenos de Linfócitos T/fisiologia , Células Th2/imunologia
17.
Exp Cell Res ; 318(14): 1767-78, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22659170

RESUMO

The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes.


Assuntos
Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Linhagem Celular , Células Cultivadas , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Transcrição Gênica/genética , Fatores de Transcrição de p300-CBP/genética , Proteína AIRE
18.
J Allergy Clin Immunol ; 129(5): 1297-306, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22445417

RESUMO

BACKGROUND: Enhanced apoptosis of keratinocytes is the main cause of eczema and spongiosis in patients with the common inflammatory skin disease atopic dermatitis (AD). OBJECTIVE: The aim of the study was to investigate molecular mechanisms of AD-related apoptosis of keratinocytes. METHODS: Primary keratinocytes isolated from patients with AD and healthy donors were used to study apoptosis by using annexin V/7-aminoactinomycin D staining. Illumina mRNA Expression BeadChips, quantitative RT-PCR, and immunofluorescence were used to study gene expression. In silico analysis of candidate genes was performed on genome-wide single nucleotide polymorphism data. RESULTS: We demonstrate that keratinocytes of patients with AD exhibit increased IFN-γ-induced apoptosis compared with keratinocytes from healthy subjects. Further mRNA expression analyses revealed differential expression of apoptosis-related genes in AD keratinocytes and skin and the upregulation of immune system-related genes in skin biopsy specimens of chronic AD lesions. Three apoptosis-related genes (NOD2, DUSP1, and ADM) and 8 genes overexpressed in AD skin lesions (CCDC109B, CCL5, CCL8, IFI35, LYN, RAB31, IFITM1, and IFITM2) were induced by IFN-γ in primary keratinocytes. The protein expression of IFITM1, CCL5, and CCL8 was verified in AD skin. In line with the functional studies and AD-related mRNA expression changes, in silico analysis of genome-wide single nucleotide polymorphism data revealed evidence of an association between AD and genetic markers close to or within the IFITM cluster or RAB31, DUSP1, and ADM genes. CONCLUSION: Our results demonstrate increased IFN-γ responses in skin of patients with AD and suggest involvement of multiple new apoptosis- and inflammation-related factors in the development of AD.


Assuntos
Apoptose/imunologia , Dermatite Atópica/imunologia , Interferon gama/imunologia , Queratinócitos/imunologia , Pele/patologia , Adrenomedulina/genética , Adrenomedulina/imunologia , Adrenomedulina/metabolismo , Idoso , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Apoptose/efeitos dos fármacos , Biópsia , Células Cultivadas , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Quimiocina CCL8/genética , Quimiocina CCL8/imunologia , Quimiocina CCL8/metabolismo , Biologia Computacional , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/imunologia , Fosfatase 1 de Especificidade Dupla/metabolismo , Feminino , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Humanos , Interferon gama/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Masculino , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Polimorfismo de Nucleotídeo Único , Regulação para Cima/imunologia
19.
Front Allergy ; 4: 1277244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026133

RESUMO

RNA modifications have emerged as a fundamental mechanism of post-transcriptional gene regulation, playing vital roles in cellular physiology and the development of various diseases. While the investigation of RNA modifications has seen significant advancements, the exploration of their implication in allergic diseases has been comparatively overlooked. Allergic reactions, including hay fever, asthma, eczema and food allergies, result from hypersensitive immune responses, affecting a considerable population worldwide. Despite the high prevalence, the molecular mechanisms underlying these responses remain partially understood. The potential role of RNA modifications in modulating the hypersensitive immune responses has yet to be fully elucidated. This mini-review seeks to shed light on potential connections between RNA modifications and allergy, highlighting recent findings and potential future research directions. By expanding our understanding of the complex interplay between RNA modifications and allergic responses, we hope to unlock new avenues for allergy diagnosis, prognosis, and therapeutic intervention.

20.
Front Pharmacol ; 14: 1219761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521463

RESUMO

mRNA-based vaccines and candidate therapeutics have great potential in various medical fields. For the delivery of mRNA into target cells and tissues, lipid formulations are often employed. However, this approach could cause the activation of immune responses, making it unsuitable for the treatment of inflammatory conditions. Therefore, alternative delivery systems are highly demanded. In this study, we evaluated the transport efficiency and characteristics of cell-penetrating peptide PepFect14 (PF14) and mRNA nanoparticles in the presence of different additives. Our results show that all PF14-mRNA formulations entered cultured cells, while calcium chloride enhanced the transport and production of the encoded protein in HeLa and HaCaT cell lines, and polysorbate 80 did so in primary human keratinocytes. All formulations had similar physical properties and did not remarkably affect cell viability. By selectively blocking endocytosis pathways, we show that PF14-mRNA nanoparticles primarily entered HeLa cells via macropinocytosis and HaCaT cells via both macropinocytosis and clathrin-mediated endocytosis, while none of the blockers significantly affected the delivery into primary keratinocytes. Finally, subcutaneous injection of PF14-mRNA nanoparticles before inducing mouse irritant contact dermatitis resulted in the expression of a reporter protein without provoking harmful immune responses in the skin. Together, our findings suggest that PF14-mRNA nanoparticles have the potential for developing mRNA-based therapeutics for treating inflammatory skin conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA