Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924599

RESUMO

Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.


Assuntos
Autorrenovação Celular , Quinase 5 Dependente de Ciclina/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Transdução de Sinais/efeitos dos fármacos , Quinases Dyrk
2.
Mol Ther ; 26(2): 550-567, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29273501

RESUMO

Progressive neuronal death in brainstem nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson's disease (PD). Reduction of α-synuclein levels is therefore a potential therapy for PD. However, because α-synuclein is essential for neuronal development and function, α-synuclein elimination would dramatically impact brain function. We previously developed conjugated small interfering RNA (siRNA) sequences that selectively target serotonin (5-HT) or norepinephrine (NE) neurons after intranasal administration. Here, we used this strategy to conjugate inhibitory oligonucleotides, siRNA and antisense oligonucleotide (ASO), with the triple monoamine reuptake inhibitor indatraline (IND), to selectively reduce α-synuclein expression in the brainstem monoamine nuclei of mice after intranasal delivery. Following internalization of the conjugated oligonucleotides in monoamine neurons, reduced levels of endogenous α-synuclein mRNA and protein were found in substantia nigra pars compacta (SNc), ventral tegmental area (VTA), dorsal raphe nucleus (DR), and locus coeruleus (LC). α-Synuclein knockdown by ∼20%-40% did not cause monoaminergic neurodegeneration and enhanced forebrain dopamine (DA) and 5-HT release. Conversely, a modest human α-synuclein overexpression in DA neurons markedly reduced striatal DA release. These results indicate that α-synuclein negatively regulates monoamine neurotransmission and set the stage for the testing of non-viral inhibitory oligonucleotides as disease-modifying agents in α-synuclein models of PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Oligonucleotídeos/genética , alfa-Sinucleína/genética , Administração Intranasal , Animais , Células Cultivadas , Corpo Estriado/metabolismo , Dopamina/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Camundongos , Vias Neurais , Oligonucleotídeos/administração & dosagem , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Prosencéfalo/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Serotonina/metabolismo , Transdução de Sinais , Substância Negra/metabolismo , Substância Negra/fisiopatologia , Transmissão Sináptica/genética
3.
Cell Tissue Res ; 373(1): 183-193, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29185072

RESUMO

The abnormal accumulation of α-synuclein aggregates in neurons, nerve fibers, or glial cells is the hallmark of a group of neurodegenerative diseases known collectively as α-synucleinopathies. Clinical, neuropathological, and experimental evidence strongly suggests that α-synuclein plays a role not only as a trigger of pathological processes at disease inception, but also as a mediator of pathological spreading during disease progression. Specific properties of α-synuclein, such as its ability to pass from one neuron to another, its tendency to aggregate, and its potential to generate self-propagating species, have been described and elucidated in animal models and may contribute to the relentless exacerbation of Parkinson's disease pathology in patients. Animal models used for studying α-synuclein accumulation, aggregation, and propagation are mostly based on three approaches: (1) intra-parenchymal inoculations of exogenous α-synuclein (e.g., synthetic α-synuclein fibrils), (2) transgenic mice, and (3) animals (mice or rats) in which α-synuclein overexpression is induced by viral vector injections. Whereas pathological α-synuclein changes are consistently observed in these models, important differences are also found. In particular, pronounced pathology in transgenic mice and viral vector-injected animals does not appear to involve self-propagating α-synuclein species. A critical discussion of these models reveals their strengths and limitations and provides the basis for recommendations concerning their use for future investigations.


Assuntos
alfa-Sinucleína/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Vetores Genéticos/metabolismo , Humanos
4.
Ann Neurol ; 75(3): 351-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24243558

RESUMO

OBJECTIVE: Mounting evidence suggests that α-synuclein, a major protein component of Lewy bodies (LB), may be responsible for initiating and spreading the pathological process in Parkinson disease (PD). Supporting this concept, intracerebral inoculation of synthetic recombinant α-synuclein fibrils can trigger α-synuclein pathology in mice. However, it remains uncertain whether the pathogenic effects of recombinant synthetic α-synuclein may apply to PD-linked pathological α-synuclein and occur in species closer to humans. METHODS: Nigral LB-enriched fractions containing pathological α-synuclein were purified from postmortem PD brains by sucrose gradient fractionation and subsequently inoculated into the substantia nigra or striatum of wild-type mice and macaque monkeys. Control animals received non-LB fractions containing soluble α-synuclein derived from the same nigral PD tissue. RESULTS: In both mice and monkeys, intranigral or intrastriatal inoculations of PD-derived LB extracts resulted in progressive nigrostriatal neurodegeneration starting at striatal dopaminergic terminals. No neurodegeneration was observed in animals receiving non-LB fractions from the same patients. In LB-injected animals, exogenous human α-synuclein was quickly internalized within host neurons and triggered the pathological conversion of endogenous α-synuclein. At the onset of LB-induced degeneration, host pathological α-synuclein diffusely accumulated within nigral neurons and anatomically interconnected regions, both anterogradely and retrogradely. LB-induced pathogenic effects required both human α-synuclein present in LB extracts and host expression of α-synuclein. INTERPRETATION: α-Synuclein species contained in PD-derived LB are pathogenic and have the capacity to initiate a PD-like pathological process, including intracellular and presynaptic accumulations of pathological α-synuclein in different brain areas and slowly progressive axon-initiated dopaminergic nigrostriatal neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/patologia , Corpos de Lewy/química , Degeneração Neural/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Extratos de Tecidos/toxicidade , alfa-Sinucleína/toxicidade , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Macaca mulatta , Camundongos , Camundongos Knockout , Microinjeções , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Extratos de Tecidos/química , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/genética , alfa-Sinucleína/isolamento & purificação
5.
Trials ; 25(1): 388, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886755

RESUMO

BACKGROUND: Complete surgical removal of pancreatic ductal adenocarcinoma (PDAC) is central to all curative treatment approaches for this aggressive disease, yet this is only possible in patients technically amenable to resection. Hence, an accurate assessment of whether patients are suitable for surgery is of paramount importance. The SCANPatient trial aims to test whether implementing a structured synoptic radiological report results in increased institutional accuracy in defining surgical resectability of non-metastatic PDAC. METHODS: SCANPatient is a batched, stepped wedge, comparative effectiveness, cluster randomised clinical trial. The trial will be conducted at 33 Australian hospitals all of which hold regular multi-disciplinary team meetings (MDMs) to discuss newly diagnosed patients with PDAC. Each site is required to manage a minimum of 20 patients per year (across all stages). Hospitals will be randomised to begin synoptic reporting within a batched, stepped wedge design. Initially all hospitals will continue to use their current reporting method; within each batch, after each 6-month period, a randomly selected group of hospitals will commence using the synoptic reports, until all hospitals are using synoptic reporting. Each hospital will provide data from patients who (i) are aged 18 or older; (ii) have suspected PDAC and have an abdominal CT scan, and (iii) are presented at a participating MDM. Non-metastatic patients will be documented as one of the following categories: (1) locally advanced and surgically unresectable; (2) borderline resectable; or (3) anatomically clearly resectable (Note: Metastatic disease is treated as a separate category). Data collection will last for 36 months in each batch, and a total of 2400 patients will be included. DISCUSSION: Better classifying patients with non-metastatic PDAC as having tumours that are either clearly resectable, borderline or locally advanced and unresectable may improve patient outcomes by optimising care and treatment planning. The borderline resectable group are a small but important cohort in whom surgery with curative intent may be considered; however, inconsistencies with definitions and an understanding of resectability status means these patients are often incorrectly classified and hence overlooked for curative options. TRIAL REGISTRATION: The SCANPatient trial was registered on 17th May 2023 in the Australian New Zealand Clinical Trials Registry (ANZCTR) (ACTRN12623000508673).


Assuntos
Carcinoma Ductal Pancreático , Pesquisa Comparativa da Efetividade , Estudos Multicêntricos como Assunto , Neoplasias Pancreáticas , Ensaios Clínicos Controlados Aleatórios como Assunto , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/terapia , Valor Preditivo dos Testes , Austrália , Pancreatectomia
6.
J Neurosci ; 30(37): 12535-44, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844148

RESUMO

Mounting evidence suggests a role for autophagy dysregulation in Parkinson's disease (PD). The bulk degradation of cytoplasmic proteins (including α-synuclein) and organelles (such as mitochondria) is mediated by macroautophagy, which involves the sequestration of cytosolic components into autophagosomes (AP) and its delivery to lysosomes. Accumulation of AP occurs in postmortem brain samples from PD patients, which has been widely attributed to an induction of autophagy. However, the cause and pathogenic significance of these changes remain unknown. Here we found in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD that AP accumulation and dopaminergic cell death are preceded by a marked decrease in the amount of lysosomes within dopaminergic neurons. Lysosomal depletion was secondary to the abnormal permeabilization of lysosomal membranes induced by increased mitochondrial-derived reactive oxygen species. Lysosomal permeabilization resulted in a defective clearance and subsequent accumulation of undegraded AP and contributed directly to neurodegeneration by the ectopic release of lysosomal proteases into the cytosol. Lysosomal breakdown and AP accumulation also occurred in PD brain samples, where Lewy bodies were strongly immunoreactive for AP markers. Induction of lysosomal biogenesis by genetic or pharmacological activation of lysosomal transcription factor EB restored lysosomal levels, increased AP clearance and attenuated 1-methyl-4-phenylpyridinium-induced cell death. Similarly, the autophagy-enhancer compound rapamycin attenuated PD-related dopaminergic neurodegeneration, both in vitro and in vivo, by restoring lysosomal levels. Our results indicate that AP accumulation in PD results from defective lysosomal-mediated AP clearance secondary to lysosomal depletion. Restoration of lysosomal levels and function may thus represent a novel neuroprotective strategy in PD.


Assuntos
Autofagia/fisiologia , Lisossomos/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Idoso , Animais , Animais Recém-Nascidos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Citosol/enzimologia , Citosol/patologia , Modelos Animais de Doenças , Dopamina/fisiologia , Humanos , Lisossomos/patologia , Lisossomos/ultraestrutura , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Peptídeo Hidrolases/metabolismo , Fagossomos/metabolismo , Fagossomos/patologia , Fagossomos/ultraestrutura , Ratos , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/ultraestrutura
7.
Biochem Pharmacol ; 186: 114437, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33571503

RESUMO

MerTK has been identified as a promising target for therapeutic intervention in glioblastoma. Genetic studies documented a range of oncogenic processes that MerTK targeting could influence, however robust pharmacological validation has been missing. The aim of this study was to assess therapeutic potential of MerTK inhibitors in glioblastoma therapy. Unlike previous studies, our work provides several lines of evidence that MerTK activity is dispensable for glioblastoma growth. We observed heterogeneous responses to MerTK inhibitors that could not be correlated to MerTK inhibition or MerTK expression in cells. The more selective MerTK inhibitors UNC2250 and UNC2580A lack the anti-proliferative potency of less-selective inhibitors exemplified by UNC2025. Functional assays in MerTK-high and MerTK-deficient cells further demonstrate that the anti-cancer efficacy of UNC2025 is MerTK-independent. However, despite its efficacy in vitro, UNC2025 failed to attenuate glioblastoma growth in vivo. Gene expression analysis from cohorts of glioblastoma patients identified that MerTK expression correlates negatively with proliferation and positively with quiescence genes, suggesting that MerTK regulates dormancy rather than proliferation in glioblastoma. In summary, this study demonstrates the importance of orthogonal inhibitors and disease-relevant models in target validation studies and raises a possibility that MerTK inhibitors could be used to target dormant glioblastoma cells.


Assuntos
Proliferação de Células/fisiologia , Glioblastoma/enzimologia , Células-Tronco Neoplásicas/enzimologia , c-Mer Tirosina Quinase/antagonistas & inibidores , c-Mer Tirosina Quinase/biossíntese , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cicloexanóis/farmacologia , Relação Dose-Resposta a Droga , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Cell Death Discov ; 7(1): 81, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863878

RESUMO

Both tumour suppressive and oncogenic functions have been reported for dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Herein, we performed a detailed investigation to delineate the role of DYRK1A in glioblastoma. Our phosphoproteomic and mechanistic studies show that DYRK1A induces degradation of cyclin B by phosphorylating CDC23, which is necessary for the function of the anaphase-promoting complex, a ubiquitin ligase that degrades mitotic proteins. DYRK1A inhibition leads to the accumulation of cyclin B and activation of CDK1. Importantly, we established that the phenotypic response of glioblastoma cells to DYRK1A inhibition depends on both retinoblastoma (RB) expression and the degree of residual DYRK1A activity. Moderate DYRK1A inhibition leads to moderate cyclin B accumulation, CDK1 activation and increased proliferation in RB-deficient cells. In RB-proficient cells, cyclin B/CDK1 activation in response to DYRK1A inhibition is neutralized by the RB pathway, resulting in an unchanged proliferation rate. In contrast, complete DYRK1A inhibition with high doses of inhibitors results in massive cyclin B accumulation, saturation of CDK1 activity and cell cycle arrest, regardless of RB status. These findings provide new insights into the complexity of context-dependent DYRK1A signalling in cancer cells.

9.
Cancers (Basel) ; 12(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168910

RESUMO

MAPK-activated protein kinase 2 (MK2) has diverse roles in cancer. In response to chemotherapy, MK2 inhibition is synthetically lethal to p53-deficiency. While TP53 deletion is rare in glioblastomas, these tumors often carry TP53 mutations. Here, we show that MK2 inhibition strongly attenuated glioblastoma cell proliferation through p53wt stabilization and senescence. The senescence-inducing efficacy of MK2 inhibition was particularly strong when cells were co-treated with the standard-of-care temozolomide. However, MK2 inhibition also increased the stability of p53 mutants and enhanced the proliferation of p53-mutant stem cells. These observations reveal that in response to DNA damaging chemotherapy, targeting MK2 in p53-mutated cells produces a phenotype that is distinct from the p53-deficient phenotype. Thus, MK2 represents a novel drug target in 70% glioblastomas harboring intact TP53 gene. However, targeting MK2 in tumors with TP53 mutations may accelerate disease progression. These findings are highly relevant since TP53 mutations occur in over 50% of all cancers.

10.
Trends Pharmacol Sci ; 40(2): 128-141, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30612715

RESUMO

Cancer cell dormancy is a process whereby cells enter reversible cell cycle arrest, termed quiescence. Quiescence is essential for cancer cells to acquire additional mutations, to survive in a new environment and initiate metastasis, to become resistant to cancer therapy, and to evade immune destruction. Thus, dormant cancer cells are considered to be responsible for cancer progression. As we start to understand the mechanisms that enable quiescence, we can begin to develop pharmacological strategies to target dormant cancer cells. Herein, we summarize the major molecular mechanisms underlying the dormancy of disseminated tumor cells and drug-tolerant persister cells. We then analyze the current pharmacological strategies aimed (i) to keep cancer cells in the harmless dormant state, (ii) to reactivate dormant cells to increase their susceptibility to anti-proliferative drugs, and (iii) to eradicate dormant cancer cells.


Assuntos
Antineoplásicos/farmacologia , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos , Humanos , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Evasão Tumoral
11.
ACS Pharmacol Transl Sci ; 2(6): 402-413, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-32259073

RESUMO

Sensitivity to microtubule-targeting agents (MTAs) varies among cancers and predicting the response of individual cancer patients to MTAs remains challenging. As microtubules possess vast molecular heterogeneity generated by tubulin isotypes and their post-translational modifications, we questioned whether this heterogeneity can impact MTA sensitivity. We investigated microtubule heterogeneity in 15 glioblastoma cell lines and measured sensitivity of orthogonal MTAs using a per-division growth rate inhibition method that corrects for the confounding effects of variable cell proliferation rates. We found that the tubulin profile is unique for each glioblastoma cell line and that the total α- and ß-tubulin levels impact on MTA sensitivity. The baseline levels of α- and ß-tubulin were up to 20% lower in cells that were not effectively killed by MTAs. We report that lower α/ß-tubulin expression is associated with lack of cell differentiation and increased expression of stemness markers. The dedifferentiated stem-like cells with low α/ß-tubulin levels survive MTAs treatment via reversible nonmutational dormancy. Our findings provide novel insights into the relationships between microtubules and MTAs and lay a foundation for better understanding of the sensitivity of cancer cells to MTAs.

12.
Acta Neuropathol Commun ; 6(1): 8, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422109

RESUMO

In Parkinson's disease (PD) there is widespread accumulation in the brain of abnormal α-synuclein aggregates forming intraneuronal Lewy bodies (LB). It is now well established that LB-type α-synuclein aggregates also occur in the peripheral autonomic nervous system in PD, from where it has been speculated they may progressively spread to the central nervous system through synaptically-connected brain networks and reach the substantia nigra to trigger herein dopaminergic dysfunction/degeneration and subsequent parkinsonism. Supporting a pathogenic role for α-synuclein aggregates we have previously shown that LB purified from postmortem PD brains promote α-synuclein pathology and dopaminergic neurodegeneration when intracerebrally inoculated into wild-type mice. However, the pathogenic capacity of PD-derived peripheral α-synuclein aggregates remains unknown. Here we addressed this question using purified LB-type α-synuclein aggregates from postmortem PD stellate ganglia (SG), a paravertebral sympathetic ganglion that exhibits consistent and conspicuous Lewy pathology in all PD patients. In contrast to our previous findings using nigral LB extracts, intracerebral inoculation of SG-derived LB into mice did not trigger long-term nigrostriatal neurodegeneration nor α-synuclein pathology. The differential pathogenic capacities of central- and peripheral-derived α-synuclein aggregates appear independent of the absolute amount and basic biochemical properties of α-synuclein within these aggregates and may rely instead on differences in α-synuclein conformation and/or yet unrecognized brain region-specific intrinsic factors. Our results argue against a putative pathogenic capacity of peripheral α-synuclein aggregates to promote α-synuclein pathology in the brain, propagate between neuronal networks or induce neurodegeneration.


Assuntos
Encéfalo/metabolismo , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo , Gânglio Estrelado/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Encéfalo/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/química , alfa-Sinucleína/isolamento & purificação
13.
Front Mol Neurosci ; 9: 128, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917109

RESUMO

Growing evidence suggests that increased levels of α-synuclein might contribute to the pathogenesis of Parkinson's disease (PD) and therefore, it is crucial to understand the mechanisms underlying α-synuclein expression. Recently, microRNAs (miRNAs) have emerged as key regulators of gene expression involved in several diseases such as PD and other neurodegenerative disorders. A systematic literature search was performed here to identify microRNAs that directly or indirectly impact in α-synuclein expression/accumulation and describe its mechanism of action. A total of 27 studies were incorporated in the review article showing evidences that six microRNAs directly bind and regulate α-synuclein expression while several miRNAs impact on α-synuclein expression indirectly by targeting other genes. In turn, α-synuclein overexpression also impacts miRNAs expression, indicating the complex network between miRNAs and α-synuclein. From the current knowledge on the central role of α-synuclein in PD pathogenesis/progression, miRNAs are likely to play a crucial role at different stages of PD and might potentially be considered as new PD therapeutic approaches.

14.
Front Neuroanat ; 8: 159, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565982

RESUMO

Formation and accumulation of misfolded protein aggregates are a central hallmark of several neurodegenerative diseases. In Parkinson's disease (PD), the aggregation-prone protein alpha-synuclein (α-syn) is the culprit. In the past few years, another piece of the puzzle has been added with data suggesting that α-syn may self-propagate, thereby contributing to the progression and extension of PD. Of particular importance, it was the seminal observation of Lewy bodies (LB), a histopathological signature of PD, in grafted fetal dopaminergic neurons in the striatum of PD patients. Consequently, these findings were a conceptual breakthrough, generating the "host to graft transmission" hypothesis, also called the "prion-like hypothesis." Several in vitro and in vivo studies suggest that α-syn can undergo a toxic templated conformational change, spread from cell to cell and from region to region, and initiate the formation of "LB-like aggregates," contributing to the PD pathogenesis. Here, we will review and discuss the current knowledge for such a putative mechanism on the prion-like nature of α-syn, and discuss about the proper use of the term prion-like.

15.
Autophagy ; 10(5): 889-900, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24686337

RESUMO

Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.


Assuntos
Canais Iônicos/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Proteína X Associada a bcl-2/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Canais Iônicos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/patologia , Permeabilidade/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA