Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 19(12): 1426-1437, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29037943

RESUMO

BACKGROUND AIMS: Light chain (AL) amyloidosis is a protein misfolding disease characterized by extracellular deposition of immunoglobulin light chains (LC) as amyloid fibrils. Patients with LC amyloid involvement of the heart have the worst morbidity and mortality. Current treatments target the plasma cells to reduce further production of amyloid proteins. There is dire need to understand the mechanisms of cardiac tissue damage from amyloid to develop novel therapies. We recently reported that LC soluble and fibrillar species cause apoptosis and inhibit cell growth in human cardiomyocytes. Mesenchymal stromal cells (MSCs) can promote wound healing and tissue remodeling. The objective of this study was to evaluate MSCs to protect cardiomyocytes affected by AL amyloid fibrils. METHODS: We used live cell imaging and proteomics to analyze the effect of MSCs in the growth arrest caused by AL amyloid fibrils. RESULTS: We evaluated the growth of human cardiomyocytes (RFP-AC16 cells) in the presence of cytotoxic LC amyloid fibrils. MSCs reversed the cell growth arrest caused by LC fibrils. We also demonstrated that this effect requires cell contact and may be mediated through paracrine factors modulating cell adhesion and extracellular matrix remodeling. To our knowledge, this is the first report of MSC protection of human cardiomyocytes in amyloid disease. CONCLUSIONS: This important proof of concept study will inform future rational development of MSC therapy in cardiac LC amyloid.


Assuntos
Amiloide/toxicidade , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/patologia , Amiloide/metabolismo , Apoptose , Células Cultivadas , Técnicas de Cocultura , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/terapia , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
2.
Leukemia ; 34(5): 1383-1393, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31796914

RESUMO

Light chain (AL) amyloidosis is a progressive, degenerative disease characterized by the misfolding and amyloid deposition of immunoglobulin light chain (LC). The amyloid deposits lead to organ failure and death. Our laboratory is specifically interested in cardiac involvement of AL amyloidosis. We have previously shown that the fibrillar aggregates of LC proteins can be cytotoxic and arrest the growth of human RFP-AC16 cardiomyocytes in vitro. We showed that adipose-derived mesenchymal stromal cells (AMSC) can rescue the cardiomyocytes from the fibril-induced growth arrest through contact-dependent mechanisms. In this study, we examined the transcriptome changes of human cardiomyocytes and AMSC in the presence of AL amyloid fibrils. The presence of fibrils causes a 'priming' immune response in AMSC associated with interferon associated genes. Exposure to AL fibrils induced changes in the pathways associated with immune response and extracellular matrix components in cardiomyocytes. We also observed upregulation of innate immune-associated transcripts (chemokines, cytokines, and complement), suggesting that amyloid fibrils initiate an innate immune response on these cells, possibly due to phenotypic transformation. This study corroborates and expands our previous studies and identifies potential new immunologic mechanisms of action for fibril toxicity on human cardiomyocytes and AMSC rescue effect on cardiomyocytes.


Assuntos
Biomarcadores/análise , Cadeias Leves de Imunoglobulina/imunologia , Amiloidose de Cadeia Leve de Imunoglobulina/imunologia , Inflamação/imunologia , Células-Tronco Mesenquimais/imunologia , Miócitos Cardíacos/imunologia , Apoptose , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Inflamação/metabolismo , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
3.
Methods Mol Biol ; 1873: 123-153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30341607

RESUMO

Common biophysical techniques like absorption and fluorescence spectroscopy, microscopy, and light scattering studies have been in use to investigate fibril assembly for a long time. However, there is sometimes a lack of consensus from the findings of an individual technique when compared in parallel with the other techniques. In this chapter, we aim to provide a concise compilation of techniques that can effectively be used to obtain a comprehensive representation of the structural, aggregation, and toxicity determinants in immunoglobulin light chain amyloidosis. We start by giving a brief introduction on amyloid assembly and the advantages of using simple and readily available techniques to study aggregation. After an overview on preparation of protein to set up parallel experiments, we provide a systematic description of the in vitro techniques used to study aggregation in AL protein. Additionally, we thoroughly discuss the steps needed in our experience during the individual experiments for better reproducibility and data analysis.


Assuntos
Amiloide/química , Bioensaio , Cadeias Leves de Imunoglobulina/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Amiloidose/diagnóstico , Apoptose , Benzotiazóis/química , Benzotiazóis/metabolismo , Bioensaio/métodos , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Difusão Dinâmica da Luz , Cadeias Leves de Imunoglobulina/metabolismo , Tamanho da Partícula , Espectrometria de Fluorescência
4.
Chem Commun (Camb) ; 54(76): 10664-10674, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30087961

RESUMO

Light chain (AL) amyloidosis is a devastating, complex, and incurable protein misfolding disease. It is characterized by an abnormal proliferation of plasma cells (fully differentiated B cells) producing an excess of monoclonal immunoglobulin light chains that are secreted into circulation, where the light chains misfold, aggregate as amyloid fibrils in target organs, and cause organ dysfunction, organ failure, and death. In this article, we will review the factors that contribute to AL amyloidosis complexity, the findings by our laboratory from the last 16 years and the work from other laboratories on understanding the structural, kinetics, and thermodynamic contributions that drive immunoglobulin light chain-associated amyloidosis. We will discuss the role of cofactors and the mechanism of cellular damage. Last, we will review our recent findings on the high resolution structure of AL amyloid fibrils. AL amyloidosis is the best example of protein sequence diversity in misfolding diseases, as each patient has a unique combination of germline donor sequences and multiple amino acid mutations in the protein that forms the amyloid fibril.


Assuntos
Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/fisiopatologia , Multimerização Proteica , Amiloide/química , Amiloide/genética , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Rearranjo Gênico , Glicosaminoglicanos/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Mutação , Plasmócitos/metabolismo , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA