Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(41): e2308635120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782788

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest human malignancies. Advanced PDAC is considered incurable. Nearly 90% of pancreatic cancers are caused by oncogenic KRAS mutations. The mechanisms of primary or acquired resistance to KRAS inhibition are currently unknown. Here, we propose that oncogenic dependency, rather than KRAS mutation per se, plays a dominant role in the immune response to cancer, including late-stage PDAC. Classifying tumor samples according to KRAS activity scores allows accurate prediction of tumor immune composition and therapy response. Dual RAS/MAPK pathway blockade combining KRAS and MEK inhibitors is more effective than the selective KRAS inhibitor alone in attenuating MAPK activation and unblocking the influx of T cells into the tumor. Lowering KRAS activity in established tumors promotes immune infiltration, but with a limited antitumor effect, whereas combining KRAS/MEK inhibition with immune checkpoint blockade achieves durable regression in preclinical models. The results are directly applicable to stratifying human PDAC based on KRAS dependency values and immune cell composition to improve therapeutic design.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Mutação , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Imunidade
2.
Genes Dev ; 32(17-18): 1175-1187, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30135074

RESUMO

A dichotomy exists regarding the role of signal transducer and activator of transcription 3 (STAT3) in cancer. Functional and genetic studies demonstrate either an intrinsic requirement for STAT3 or a suppressive effect on common types of cancer. These contrasting actions of STAT3 imply context dependency. To examine mechanisms that underlie STAT3 function in cancer, we evaluated the impact of STAT3 activity in KRAS-driven lung and pancreatic cancer. Our study defines a fundamental and previously unrecognized function of STAT3 in the maintenance of epithelial cell identity and differentiation. Loss of STAT3 preferentially associates with the acquisition of mesenchymal-like phenotypes and more aggressive tumor behavior. In contrast, persistent STAT3 activation through Tyr705 phosphorylation confers a differentiated epithelial morphology that impacts tumorigenic potential. Our results imply a mechanism in which quantitative differences of STAT3 Tyr705 phosphorylation, as compared with other activation modes, direct discrete outcomes in tumor progression.


Assuntos
Neoplasias Pulmonares/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator de Transcrição STAT3/metabolismo , Adenocarcinoma/genética , Animais , Carcinogênese , Diferenciação Celular , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/citologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas/fisiologia , Fator de Transcrição STAT3/química , Transativadores/fisiologia , Peixe-Zebra
3.
Semin Immunol ; 43: 101282, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31771763

RESUMO

Healthy tissues of the body express relatively low basal levels of interferons. However, following detection of microbial invasion by sentinel receptors, a cascade of events initiates leading to the transcriptional induction of interferon genes. Interferons are secreted and act primarily as paracrine cytokines to bind neighboring cell surface receptors. Binding to interferon receptors activates a signal pathway to the nucleus inducing a set of interferon-stimulated genes. The biological activity of these genes confers the unique antiviral and innate immune response of interferons. The rapid induction of interferons is critical to survival, and equally critical is the recovery from this defensive state. Either an aberrant response to infection or an inherited genetic disorder that leads to sustained or increased interferon levels can tip the balance towards pathogenesis.


Assuntos
Doenças Autoimunes/metabolismo , Interferon Tipo I/metabolismo , Receptores de Interferon/metabolismo , Viroses/imunologia , Animais , Doenças Autoimunes/genética , Humanos , Imunidade Inata/genética , Interferon Tipo I/genética , Mutação/genética , Ácidos Nucleicos/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Transdução de Sinais
4.
J Biol Chem ; 292(39): 16257-16266, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28821622

RESUMO

Gammaherpesviruses (γHVs) have a dynamic strategy for lifelong persistence, involving productive infection, latency, and intermittent reactivation. In latency reservoirs, such as B lymphocytes, γHVs exist as viral episomes and express few viral genes. Although the ability of γHV to reactivate from latency and re-enter the lytic phase is challenging to investigate and control, it is known that the γHV replication and transcription activator (RTA) can promote lytic reactivation. In this study, we provide first evidence that RTA of murine γΗV68 (MHV68) selectively binds and enhances the activity of tyrosine-phosphorylated host STAT3. STAT3 is a transcription factor classically activated by specific tyrosine 705 phosphorylation (pTyr705-STAT3) in response to cytokine stimulation. pTyr705-STAT3 forms a dimer that avidly binds a consensus target site in the promoters of regulated genes, and our results indicate that RTA cooperatively enhances the ability of pTyr705-STAT3 to induce expression of a STAT3-responsive reporter gene. As indicated by coimmunoprecipitation, in latently infected B cells that are stimulated to reactivate MHV68, RTA bound specifically to endogenous pTyr705-STAT3. An in vitro binding assay confirmed that RTA selectively recognizes pTyr705-STAT3 and indicated that the C-terminal transactivation domain of RTA was required for enhancing STAT3-directed gene expression. The cooperation of these transcription factors may influence both viral and host genes. During MHV68 de novo infection, pTyr705-STAT3 promoted the temporal expression of ORF59, a viral replication protein. Our results demonstrate that MHV68 RTA specifically recognizes and recruits activated pTyr705-STAT3 during the lytic phase of infection.


Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Interleucina-6/metabolismo , Receptores de Interleucina-6/agonistas , Rhadinovirus/fisiologia , Fator de Transcrição STAT3/agonistas , Transativadores/metabolismo , Substituição de Aminoácidos , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Linhagem Celular , Dimerização , Genes Reporter , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Camundongos , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Receptores de Interleucina-6/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Rhadinovirus/imunologia , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transativadores/química , Transativadores/genética , Tirosina/metabolismo , Ativação Viral
5.
Nat Rev Immunol ; 6(8): 602-12, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16868551

RESUMO

Accurate cellular localization is crucial for the effective function of most signalling molecules and nuclear translocation is central to the function of transcription factors. The passage of large molecules between the cytoplasm and nucleus is restricted, and this restriction affords a mechanism to regulate transcription by controlling the access of transcription factors to the nucleus. In this Review, we focus on the signal transducer and activator of transcription (STAT) family of transcription factors. The regulation of the nuclear trafficking of STAT-family members is diverse. Some STAT proteins constitutively shuttle between the nucleus and cytoplasm, whereas others require tyrosine phosphorylation for nuclear localization. In either case, the regulation of nuclear trafficking can provide a target for therapeutic intervention.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição STAT/metabolismo , Transporte Ativo do Núcleo Celular , Animais , DNA/metabolismo , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo
6.
J Cell Sci ; 126(Pt 15): 3333-43, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23704351

RESUMO

Signal transducer and activator of transcription 5 (STAT5) is crucial for physiological processes that include hematopoiesis, liver metabolism and mammary gland development. However, aberrant continual activity of STAT5 has been causally linked to human leukemias and solid tumor formation. As a regulated transcription factor, precise cellular localization of STAT5 is essential. Conventional nuclear localization signals consist of short stretches of basic amino acids. In this study, we provide evidence that STAT5 nuclear import is dependent on an unconventional nuclear localization signal that functions within the conformation of an extensive coiled-coil domain. Both in vitro binding and in vivo functional assays reveal that STAT5 nuclear import is mediated by the importin-α3/ß1 system independently of STAT5 activation by tyrosine phosphorylation. The integrity of the coiled-coil domain is essential for STAT5 transcriptional induction of the ß-casein gene following prolactin stimulation as well as its ability to synergize with the glucocorticoid receptor. The glucocorticoid receptor accumulates in the nucleus in response to prolactin and this nuclear import is dependent on STAT5 nuclear import. STAT5 continually shuttles in and out of the nucleus and live cell imaging demonstrates that STAT5 nuclear export is mediated by both chromosome region maintenance 1 (Crm1)-dependent and Crm1-independent pathways. A Crm1-dependent nuclear export signal was identified within the STAT5 N-terminus. These findings provide insight into the fundamental mechanisms that regulate STAT5 nuclear trafficking and cooperation with the glucocorticoid receptor and provide a basis for clinical intervention of STAT5 function in disease.


Assuntos
Caseínas/genética , Sinais de Localização Nuclear/metabolismo , Fator de Transcrição STAT5/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células COS , Caseínas/metabolismo , Núcleo Celular/metabolismo , Expressão Gênica , Células HeLa , Humanos , Sinais de Localização Nuclear/genética , Fosforilação , Fator de Transcrição STAT5/genética , Transdução de Sinais
7.
Elife ; 132024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573819

RESUMO

Oncogenic mutations in KRAS are among the most common in cancer. Classical models suggest that loss of epithelial characteristics and the acquisition of mesenchymal traits are associated with cancer aggressiveness and therapy resistance. However, the mechanistic link between these phenotypes and mutant KRAS biology remains to be established. Here, we identify STAT3 as a genetic modifier of TGF-beta-induced epithelial to mesenchymal transition. Gene expression profiling of pancreatic cancer cells identifies more than 200 genes commonly regulated by STAT3 and oncogenic KRAS. Functional classification of the STAT3-responsive program reveals its major role in tumor maintenance and epithelial homeostasis. The signatures of STAT3-activated cell states can be projected onto human KRAS mutant tumors, suggesting that they faithfully reflect characteristics of human disease. These observations have implications for therapeutic intervention and tumor aggressiveness.


Assuntos
Neoplasias Pancreáticas , Fator de Crescimento Transformador beta , Humanos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
mBio ; 15(2): e0299823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38170993

RESUMO

Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Infecções por Herpesviridae , Herpesvirus Humano 8 , Rhadinovirus , Sarcoma de Kaposi , Animais , Humanos , Camundongos , Gammaherpesvirinae/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Camundongos Endogâmicos C57BL , Rhadinovirus/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Latência Viral/genética
9.
J Biol Chem ; 287(25): 20904-12, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22547065

RESUMO

Breast tumor kinase (Brk) was originally isolated from a human metastatic breast tumor, but also is found expressed in other epithelial tumors and in a subset of normal epithelia. Brk is a tyrosine kinase and its expression in breast carcinoma has been linked to tumor progression. The signal transducer and activator of transcription 3 (STAT3) is one of the substrate targets of Brk, and elevated tyrosine phosphorylation of STAT3 is known to contribute to oncogenesis. Conventional activation of STAT3 occurs in response to cytokine stimulation of Janus tyrosine kinases (JAK). One of the negative regulators discovered in cytokine signaling of the JAK-STAT pathway is the suppressor of cytokine signaling 3 (SOCS3). In this report we describe the finding that SOCS3 can also inhibit the unconventional target, Brk. Investigation of the mechanism by which SOCS3 inhibits Brk reveals the SOCS3 protein binds to Brk primarily via its SH2 domain, and its main inhibitory effect is mediated by the SOCS3 kinase inhibitory region (KIR). SOCS3 has only a modest effect on promoting Brk degradation, and this requires the C-terminal SOCS box domain. SOCS3 is the only known inhibitor of Brk, and knowledge of the mechanisms by which SOCS3 inhibits Brk may lead to methods that block Brk in cancer progression.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteólise , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática/genética , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Ligação Proteica , Proteínas Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Domínios de Homologia de src
10.
J Immunol ; 187(10): 5336-45, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22013119

RESUMO

This study reveals a new complexity in the cellular response to DNA damage: activation of IFN signaling. The DNA damage response involves the rapid recruitment of repair enzymes and the activation of signal transducers that regulate cell-cycle checkpoints and cell survival. To understand the link between DNA damage and the innate cellular defense that occurs in response to many viral infections, we evaluated the effects of agents such as etoposide that promote dsDNA breaks. Treatment of human cells with etoposide led to the induction of IFN-stimulated genes and the IFN-α and IFN-λ genes. NF-κB, known to be activated in response to DNA damage, was shown to be a key regulator of this IFN gene induction. Expression of an NF-κB subunit, p65/RelA, was sufficient for induction of the human IFN-λ1 gene. In addition, NF-κB was required for the induction of IFN regulatory factor-1 and -7 that are able to stimulate expression of the IFN-α and IFN-λ genes. Cells that lack the NF-κB essential modulator lack the ability to induce the IFN genes following DNA damage. Breaks in DNA are generated during normal physiological processes of replication, transcription, and recombination, as well as by external genotoxic agents or infectious agents. The significant finding of IFN production as a stress response to DNA damage provides a new perspective on the role of IFN signaling.


Assuntos
Dano ao DNA/imunologia , Reparo do DNA/imunologia , Regulação da Expressão Gênica/imunologia , Interferons/biossíntese , Animais , Morte Celular/genética , Morte Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Dano ao DNA/genética , Reparo do DNA/genética , Células HeLa , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Interferons/fisiologia , Camundongos , Camundongos Knockout , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/genética , Complexos Multiproteicos/fisiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
11.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732258

RESUMO

Oncogenic mutations in KRAS are among the most common in cancer. Classical models suggest that loss of epithelial characteristics and the acquisition of mesenchymal traits are associated with cancer aggressiveness and therapy resistance. However, the mechanistic link between these phenotypes and mutant KRAS biology remains to be established. Here we identify STAT3 as a genetic modifier of TGF-beta-induced epithelial to mesenchymal transition. Gene expression profiling of pancreatic cancer cells identifies more than 200 genes commonly regulated by STAT3 and oncogenic KRAS. Functional classification of STAT3 responsive program reveals its major role in tumor maintenance and epithelial homeostasis. The signatures of STAT3-activated cell states can be projected onto human KRAS mutant tumors, suggesting that they faithfully reflect characteristics of human disease. These observations have implications for therapeutic intervention and tumor aggressiveness.

12.
bioRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36993230

RESUMO

Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor STAT3. To better understand the role of STAT3 during gammaherpesvirus latency and immune control, we utilized murine gammaherpesvirus 68 (MHV68) infection. Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak latency approximately 7-fold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to WT littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeras consisting of WT and STAT3-knockout B cells. Using a competitive model of infection, we discovered a dramatic reduction in latency in STAT3-knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that STAT3 promotes proliferation and B cell processes of the germinal center but does not directly regulate viral gene expression. Last, this analysis uncovered a STAT3-dependent role for dampening type I IFN responses in newly infected B cells. Together, our data provide mechanistic insight into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.

13.
J Biol Chem ; 286(9): 7257-66, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21190939

RESUMO

The ability of interferons (IFNs) to inhibit viral replication and cellular proliferation is well established, but the specific contribution of each IFN-stimulated gene (ISG) to these biological responses remains to be completely understood. In this report we demonstrate that ISG54, also known as IFN-induced protein with tetratricopeptide repeats 2 (IFIT2), is a mediator of apoptosis. Expression of ISG54, independent of IFN stimulation, elicits apoptotic cell death. Cell death and apoptosis were quantified by propidium iodide uptake and annexin-V staining, respectively. The activation of caspase-3, a key mediator of the execution phase of apoptosis, was clearly apparent in cells expressing ISG54. The anti-apoptotic B cell lymphoma-xl (Bcl-xl) protein inhibited the apoptotic effects of ISG54 as did the anti-apoptotic adenoviral E1B-19K protein. In addition, ISG54 was not able to promote cell death in the absence of pro-apoptotic Bcl family members, Bax and Bak. Analyses of binding partners of ISG54 revealed association with two homologous proteins, ISG56/IFIT1 and ISG60/IFIT3. In addition, ISG60 binding negatively regulates the apoptotic effects of ISG54. The results reveal a previously unidentified role of ISG54 in the induction of apoptosis via a mitochondrial pathway and shed new light on the mechanism by which IFN elicits anti-viral and anti-cancer effects.


Assuntos
Apoptose/imunologia , Interferon-alfa/metabolismo , Proteínas , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Linhagem Celular , Citoplasma/metabolismo , Humanos , Interferon-alfa/imunologia , Interferon-alfa/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/citologia , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Ligação Proteica/fisiologia , Proteínas/genética , Proteínas/imunologia , Proteínas/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
14.
J Immunol ; 185(1): 64-70, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20498360

RESUMO

The STAT6 transcription factor is essential for the development of protective immunity; however, the consequences of its activity can also contribute to the pathogenesis of autoimmune disease. Tyrosine phosphorylation is known to activate STAT6 in response to cytokine stimulation, but there is a gap in our understanding of the mechanisms by which it enters the nucleus. In this study, live cell imaging was used in conjunction with photobleaching techniques to demonstrate the continual nuclear import of STAT6, independent of tyrosine phosphorylation. The protein domain required for nuclear entry includes the coiled coil region of STAT6 and functions similarly before or after cytokine stimulation. The dynamic nuclear shuttling of STAT6 seems to be mediated by the classical importin-alpha-importin-beta1 system. Although STAT6 is imported to the nucleus continually, it accumulates in the nucleus following tyrosine phosphorylation as a result of its ability to bind DNA. These findings will impact diagnostic approaches and strategies to block the deleterious effects of STAT6 in autoimmunity.


Assuntos
Núcleo Celular/metabolismo , Aumento da Imagem , Microscopia de Fluorescência por Excitação Multifotônica , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT6/metabolismo , Transporte Ativo do Núcleo Celular/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Células COS , Núcleo Celular/imunologia , Núcleo Celular/patologia , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Aumento da Imagem/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fosforilação , Fotodegradação , Fatores de Tempo , Tirosina/metabolismo
15.
PLoS One ; 16(3): e0247394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651821

RESUMO

The inflammatory cytokine IL-6 is known to play a causal role in the promotion of cancer, although the underlying mechanisms remain to be completely understood. Interplay between endogenous and environmental cues determines the fate of cancer development. The Eµ-myc transgenic mouse expresses elevated levels of c-Myc in the B cell lineage and develops B cell lymphomas with associated mutations in p53 or other genes linked to apoptosis. We generated Eµ-myc mice that either lacked the IL-6 gene, or lacked the STAT3 gene specifically in B cells to determine the role of the IL-6/JAK/STAT3 pathway in tumor development. Using the Eµ-myc lymphoma mouse model, we demonstrate that IL-6 is a critical tumor promoter during early stages of B cell lymphomagenesis. IL-6 is shown to inhibit the expression of tumor suppressors, notably BIM and PTEN, and this may contribute to advancing MYC-driven B cell tumorigenesis. Several miRNAs known to target BIM and PTEN are upregulated by IL-6 and likely lead to the stable suppression of pro-apoptotic pathways early during the tumorigenic process. STAT3, a classical downstream effector of IL-6, appears dispensable for Eµ-myc driven lymphomagenesis. We conclude that the growth-promoting and anti-apoptotic mechanisms activated by IL-6 are critically involved in Eµ-myc driven tumor initiation and progression, but the B cell intrinsic expression of STAT3 is not required.


Assuntos
Interleucina-6/metabolismo , Linfoma de Células B/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose/genética , Linfócitos B/metabolismo , Morte Celular/genética , Genes myc , Interleucina-6/imunologia , Janus Quinases/metabolismo , Linfoma/patologia , Linfoma de Células B/genética , Linfoma de Células B/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/fisiologia , Proteína Supressora de Tumor p53/metabolismo
16.
Nat Commun ; 12(1): 1482, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674596

RESUMO

Immune evasion is a hallmark of KRAS-driven cancers, but the underlying causes remain unresolved. Here, we use a mouse model of pancreatic ductal adenocarcinoma to inactivate KRAS by CRISPR-mediated genome editing. We demonstrate that at an advanced tumor stage, dependence on KRAS for tumor growth is reduced and is manifested in the suppression of antitumor immunity. KRAS-deficient cells retain the ability to form tumors in immunodeficient mice. However, they fail to evade the host immune system in syngeneic wild-type mice, triggering strong antitumor response. We uncover changes both in tumor cells and host immune cells attributable to oncogenic KRAS expression. We identify BRAF and MYC as key mediators of KRAS-driven tumor immune suppression and show that loss of BRAF effectively blocks tumor growth in mice. Applying our results to human PDAC we show that lowering KRAS activity is likewise associated with a more vigorous immune environment.


Assuntos
Evasão da Resposta Imune/fisiologia , Modelos Genéticos , Neoplasias Pancreáticas/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Edição de Genes , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Transcriptoma , Neoplasias Pancreáticas
17.
mBio ; 12(6): e0275621, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724828

RESUMO

Outbreaks of emerging viral pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a major medical challenge. There is a pressing need for antivirals that can be rapidly deployed to curb infection and dissemination. We determined the efficacy of interferon lambda-1 (IFN-λ) as a broad-spectrum antiviral agent to inhibit SARS-CoV-2 infection and reduce pathology in a mouse model of disease. IFN-λ significantly limited SARS-CoV-2 production in primary human bronchial epithelial cells in culture. Pretreatment of human lung cells with IFN-λ completely blocked infectious virus production, and treatment with IFN-λ at the time of infection inhibited virus production more than 10-fold. To interrogate the protective effects of IFN-λ in response to SARS-CoV-2 infection, transgenic mice expressing the human angiotensin-converting enzyme 2 (ACE-2) were tested. One dose of IFN-λ administered intranasally was found to reduce animal morbidity and mortality. Our study with SARS-CoV-2 also revealed a sex differential in disease outcome. Male mice had higher mortality, reflecting the more severe symptoms and mortality found in male patients infected with SARS-CoV-2. The results indicate that IFN-λ potentially can treat early stages of SARS-CoV-2 infection and decrease pathology, and this murine model can be used to investigate the sex differential documented in COVID-19. IMPORTANCE The COVID-19 pandemic has claimed millions of lives worldwide. In this report, we used a preclinical mouse model to investigate the prophylactic and therapeutic value of intranasal IFN-λ for this acute respiratory disease. Specific vaccines have been responsible for curbing the transmission of SARS-CoV-2 in developed nations. However, vaccines require time to generate and keep pace with antigenic variants. There is a need for broad-spectrum prophylactic and therapeutic agents to combat new emerging viral pathogens. Our mouse model suggests IFN-λ has clinical utility, and it reflects the well-documented finding that male COVID-19 patients manifest more severe symptoms and mortality. Understanding this sex bias is critical for considering therapeutic approaches to COVID-19.


Assuntos
Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/terapia , Células Epiteliais/efeitos dos fármacos , Interferons/imunologia , Interferons/farmacologia , SARS-CoV-2/imunologia , Administração Intranasal , Enzima de Conversão de Angiotensina 2/genética , Animais , Antivirais/farmacologia , Brônquios/citologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/virologia , Feminino , Células HEK293 , Humanos , Interferons/classificação , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Risco , SARS-CoV-2/efeitos dos fármacos , Fatores Sexuais
18.
Cytokine Growth Factor Rev ; 18(5-6): 511-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17683973

RESUMO

The ability of transcription factors to gain entrance to the nucleus is critical to their role in gene expression. Signal transducers and activators of transcription (STATs) are latent DNA binding factors activated by specific tyrosine phosphorylation. There are seven mammalian STAT genes encoding proteins that display constitutive nuclear localization and/or conditional nuclear localization. This review will focus on STAT1 and STAT2 that are activated in response to interferon and exhibit conditional nuclear localization. The dynamic redistribution of STAT1 and STAT2 between the cytoplasm and the nucleus is coordinate with their gain of ability to bind DNA.


Assuntos
Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Animais
19.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32289152

RESUMO

With the first reports on coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the scientific community working in the field of type III IFNs (IFN-λ) realized that this class of IFNs could play an important role in this and other emerging viral infections. In this Viewpoint, we present our opinion on the benefits and potential limitations of using IFN-λ to prevent, limit, and treat these dangerous viral infections.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Interferons/metabolismo , Pneumonia Viral/metabolismo , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Internalização do Vírus
20.
FASEB J ; 22(2): 391-400, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17846080

RESUMO

Signal transducer and activator of transcription 5a (STAT5a) is a critical transcription factor for a number of physiological processes including hematopoiesis and mammary gland development. Cytokines such as growth hormone, prolactin, erythropoietin, and interleukin-2 stimulate the activation of STAT5a by tyrosine phosphorylation. Tyrosine phosphorylation confers a conformational change and the ability to bind specific target DNA. To execute its function as a signaling molecule and transcription factor, accurate cellular localization of STAT5a is essential. This study explores the nuclear trafficking of STAT5a both before phosphorylation and after tyrosine phosphorylation. With the use of live cell imaging we demonstrate the continuous shuttling of STAT5a in and out of the nucleus. Evaluation of a series of mutations and deletions identifies a region within the coiled coil domain of STAT5a that is critical for nuclear import of both unphosphorylated and tyrosine-phosphorylated forms. The mechanism that regulates transport of STAT5a through nuclear pore complexes into the nucleus is therefore independent of tyrosine phosphorylation. However, after tyrosine phosphorylation, STAT5a accumulates in the nucleus because of its retention by DNA binding. These findings should provide a foundation for further studies that involve targeting the activity of STAT5a.


Assuntos
Fator de Transcrição STAT5/química , Fator de Transcrição STAT5/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Chlorocebus aethiops , Cristalografia por Raios X , DNA/metabolismo , Humanos , Modelos Moleculares , Fosfotirosina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Fator de Transcrição STAT5/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA