Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 160(1-2): 269-84, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594183

RESUMO

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).


Assuntos
Osso e Ossos/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Intestino Delgado/citologia , Células-Tronco Mesenquimais/citologia , Animais , Cartilagem/metabolismo , Intestino Delgado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
2.
Cell ; 148(1-2): 349-61, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265420

RESUMO

Metastasis is the leading cause of cancer-associated death but has been difficult to study because it involves a series of rare, stochastic events. To capture these events, we developed a sensitive method to tag and track pancreatic epithelial cells in a mouse model of pancreatic cancer. Tagged cells invaded and entered the bloodstream unexpectedly early, before frank malignancy could be detected by rigorous histologic analysis; this behavior was widely associated with epithelial-to-mesenchymal transition (EMT). Circulating pancreatic cells maintained a mesenchymal phenotype, exhibited stem cell properties, and seeded the liver. EMT and invasiveness were most abundant at inflammatory foci, and induction of pancreatitis increased the number of circulating pancreatic cells. Conversely, treatment with the immunosuppressive agent dexamethasone abolished dissemination. These results provide insight into the earliest events of cellular invasion in situ and suggest that inflammation enhances cancer progression in part by facilitating EMT and entry into the circulation.


Assuntos
Carcinoma Ductal Pancreático/patologia , Transição Epitelial-Mesenquimal , Invasividade Neoplásica , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/imunologia , Pancreatite/patologia
3.
Gastroenterology ; 166(2): 298-312.e14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37913894

RESUMO

BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Smad3/metabolismo
4.
Genes Dev ; 30(2): 233-47, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773005

RESUMO

The two major isoforms of the paired-related homeodomain transcription factor 1 (Prrx1), Prrx1a and Prrx1b, are involved in pancreatic development, pancreatitis, and carcinogenesis, although the biological role that these isoforms serve in the systemic dissemination of pancreatic ductal adenocarcinoma (PDAC) has not been investigated. An epithelial-mesenchymal transition (EMT) is believed to be important for primary tumor progression and dissemination, whereas a mesenchymal-epithelial transition (MET) appears crucial for metastatic colonization. Here, we describe novel roles for both isoforms in the metastatic cascade using complementary in vitro and in vivo models. Prrx1b promotes invasion, tumor dedifferentiation, and EMT. In contrast, Prrx1a stimulates metastatic outgrowth in the liver, tumor differentiation, and MET. We further demonstrate that the switch from Prrx1b to Prrx1a governs EMT plasticity in both mouse models of PDAC and human PDAC. Last, we identify hepatocyte growth factor ( HGF) as a novel transcriptional target of Prrx1b. Targeted therapy of HGF in combination with gemcitabine in a preclinical model of PDAC reduces primary tumor volume and eliminates metastatic disease. Overall, we provide new insights into the isoform-specific roles of Prrx1a and Prrx1b in primary PDAC formation, dissemination, and metastatic colonization, allowing for novel therapeutic strategies targeting EMT plasticity.


Assuntos
Carcinoma Ductal Pancreático/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Invasividade Neoplásica/fisiopatologia , Neoplasias Pancreáticas/fisiopatologia , Animais , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Metástase Neoplásica/genética , Neoplasias Pancreáticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Tumorais Cultivadas
5.
Endoscopy ; 55(5): 415-422, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36323331

RESUMO

BACKGROUND: Risk stratification and recommendation for surgery for intraductal papillary mucinous neoplasm (IPMN) are currently based on consensus guidelines. Risk stratification from presurgery histology is only potentially decisive owing to the low sensitivity of fine-needle aspiration. In this study, we developed and validated a deep learning-based method to distinguish between IPMN with low grade dysplasia and IPMN with high grade dysplasia/invasive carcinoma using endoscopic ultrasound (EUS) images. METHODS: For model training, we acquired a total of 3355 EUS images from 43 patients who underwent pancreatectomy from March 2015 to August 2021. All patients had histologically proven IPMN. We used transfer learning to fine-tune a convolutional neural network and to classify "low grade IPMN" from "high grade IPMN/invasive carcinoma." Our test set consisted of 1823 images from 27 patients, recruiting 11 patients retrospectively, 7 patients prospectively, and 9 patients externally. We compared our results with the prediction based on international consensus guidelines. RESULTS: Our approach could classify low grade from high grade/invasive carcinoma in the test set with an accuracy of 99.6 % (95 %CI 99.5 %-99.9 %). Our deep learning model achieved superior accuracy in prediction of the histological outcome compared with any individual guideline, which have accuracies between 51.8 % (95 %CI 31.9 %-71.3 %) and 70.4 % (95 %CI 49.8-86.2). CONCLUSION: This pilot study demonstrated that deep learning in IPMN-EUS images can predict the histological outcome with high accuracy.


Assuntos
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Aprendizado Profundo , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patologia , Estudos Retrospectivos , Neoplasias Intraductais Pancreáticas/diagnóstico por imagem , Projetos Piloto , Adenocarcinoma Mucinoso/patologia , Neoplasias Pancreáticas/patologia
6.
J Pathol ; 257(5): 607-619, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35373359

RESUMO

Drug combination therapies for cancer treatment show high efficacy but often induce severe side effects, resulting in dose or cycle number reduction. We investigated the impact of neoadjuvant chemotherapy (neoCTx) adaptions on treatment outcome in 59 patients with pancreatic ductal adenocarcinoma (PDAC). Resections with tumor-free margins were significantly more frequent when full-dose neoCTx was applied. We determined if patient-derived organoids (PDOs) can be used to personalize poly-chemotherapy regimens by pharmacotyping of treatment-naïve and post-neoCTx PDAC PDOs. Five out of ten CTx-naïve PDO lines exhibited a differential response to either the FOLFIRINOX or the Gem/Pac regimen. NeoCTx PDOs showed a poor response to the neoadjuvant regimen that had been administered to the respective patient in 30% of cases. No significant difference in PDO response was noted when comparing modified treatments in which the least effective single drug was removed from the complete regimen. Drug testing of CTx-naïve PDAC PDOs and neoCTx PDOs may be useful to guide neoadjuvant and adjuvant regimen selection, respectively. Personalizing poly-chemotherapy regimens by omitting substances with low efficacy could potentially result in less severe side effects, thereby increasing the fraction of patients receiving a full course of neoadjuvant treatment. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Resistência a Medicamentos , Humanos , Terapia Neoadjuvante , Organoides/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
7.
Cell Mol Life Sci ; 80(1): 12, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534167

RESUMO

Targeting KRAS downstream signaling remains an important therapeutic approach in pancreatic cancer. We used primary pancreatic ductal epithelial cells and mouse models allowing the conditional expression of oncogenic KrasG12D, to investigate KRAS signaling integrators. We observed that the AP1 family member FRA1 is tightly linked to the KRAS signal and expressed in pre-malignant lesions and the basal-like subtype of pancreatic cancer. However, genetic-loss-of-function experiments revealed that FRA1 is dispensable for KrasG12D-induced pancreatic cancer development in mice. Using FRA1 gain- and loss-of-function models in an unbiased drug screen, we observed that FRA1 is a modulator of the responsiveness of pancreatic cancer to inhibitors of the RAF-MEK-ERK cascade. Mechanistically, context-dependent FRA1-associated adaptive rewiring of oncogenic ERK signaling was observed and correlated with sensitivity to inhibitors of canonical KRAS signaling. Furthermore, pharmacological-induced degradation of FRA1 synergizes with MEK inhibitors. Our studies establish FRA1 as a part of the molecular machinery controlling sensitivity to MAPK cascade inhibition allowing the development of mechanism-based therapies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-fos , Animais , Camundongos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neoplasias Pancreáticas
8.
Gastroenterology ; 160(1): 346-361.e24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007300

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibroblast-rich desmoplastic stroma. Cancer-associated fibroblasts (CAFs) have been shown to display a high degree of interconvertible states including quiescent, inflammatory, and myofibroblastic phenotypes; however, the mechanisms by which this plasticity is achieved are poorly understood. Here, we aim to elucidate the role of CAF plasticity and its impact on PDAC biology. METHODS: To investigate the role of mesenchymal plasticity in PDAC progression, we generated a PDAC mouse model in which CAF plasticity is modulated by genetic depletion of the transcription factor Prrx1. Primary pancreatic fibroblasts from this mouse model were further characterized by functional in vitro assays. To characterize the impact of CAFs on tumor differentiation and response to chemotherapy, various coculture experiments were performed. In vivo, tumors were characterized by morphology, extracellular matrix composition, and tumor dissemination and metastasis. RESULTS: Our in vivo findings showed that Prrx1-deficient CAFs remain constitutively activated. Importantly, this CAF phenotype determines tumor differentiation and disrupts systemic tumor dissemination. Mechanistically, coculture experiments of tumor organoids and CAFs showed that CAFs shape the epithelial-to-mesenchymal phenotype and confer gemcitabine resistance of PDAC cells induced by CAF-derived hepatocyte growth factor. Furthermore, gene expression analysis showed that patients with pancreatic cancer with high stromal expression of Prrx1 display the squamous, most aggressive, subtype of PDAC. CONCLUSIONS: Here, we define that the Prrx1 transcription factor is critical for tuning CAF activation, allowing a dynamic switch between a dormant and an activated state. This work shows that Prrx1-mediated CAF plasticity has significant impact on PDAC biology and therapeutic resistance.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/patologia , Proteínas de Homeodomínio/fisiologia , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/patologia , Animais , Plasticidade Celular/fisiologia , Modelos Animais de Doenças , Camundongos
9.
Gastroenterology ; 161(5): 1601-1614.e23, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303658

RESUMO

BACKGROUND & AIMS: Promoted by pancreatitis, oncogenic KrasG12D triggers acinar cells' neoplastic transformation through acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia. Anterior gradient 2 (Agr2), a known inhibitor of p53, is detected at early stage of pancreatic ductal adenocarcinoma (PDAC) development. RNA polymerase II (RNAPII) is a key nuclear enzyme; regulation of its nuclear localization in mammalian cells represents a potential therapeutic target. METHODS: A mouse model of inflammation-accelerated KrasG12D-driven ADM and pancreatic intraepithelial neoplasia development was used. Pancreas-specific Agr2 ablation was performed to access its role in pancreatic carcinogenesis. Hydrophobic hexapeptides loaded in liposomes were developed to disrupt Agr2-RNAPII complex. RESULTS: We found that Agr2 is up-regulated in ADM-to-pancreatic intraepithelial neoplasia transition in inflammation and KrasG12D-driven early pancreatic carcinogenesis. Genetic ablation of Agr2 specifically blocks this metaplastic-to-neoplastic process. Mechanistically, Agr2 directs the nuclear import of RNAPII via its C-terminal nuclear localization signal, undermining the ATR-dependent p53 activation in ADM lesions. Because Agr2 binds to the largest subunit of RNAPII in a peptide motif-dependent manner, we developed a hexapeptide to interfere with the nuclear import of RNAPII by competitively disrupting the Agr2-RNAPII complex. This novel hexapeptide leads to dysfunction of RNAPII with concomitant activation of DNA damage response in early neoplastic lesions; hence, it dramatically compromises PDAC initiation in vivo. Moreover, the hexapeptide sensitizes PDAC cells and patient-derived organoids harboring wild-type p53 to RNAPII inhibitors and first-line chemotherapeutic agents in vivo. Of note, this therapeutic effect is efficient across various cancer types. CONCLUSIONS: Agr2 is identified as a novel adaptor protein for nuclear import of RNAPII in mammalian cells. Also, we provide genetic evidence defining Agr2-dependent nuclear import of RNAPII as a pharmaceutically accessible target for prevention and treatment in PDAC in the context of wild-type p53.


Assuntos
Carcinoma in Situ/enzimologia , Carcinoma Ductal Pancreático/enzimologia , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias Pancreáticas/enzimologia , RNA Polimerase II/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Antineoplásicos/farmacologia , Carcinoma in Situ/tratamento farmacológico , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mucoproteínas/genética , Mutação , Oligopeptídeos/farmacologia , Proteínas Oncogênicas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Polimerase II/genética , Proteína Supressora de Tumor p53/genética
10.
Bioorg Chem ; 119: 105505, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838332

RESUMO

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541. We show that a subgroup of gastrointestinal cancer cell lines and primary patient-derived organoids are MDEG-541 sensitive. Although MYC expression was regulated in a CRBN-, proteasome- and ubiquitin-dependent manner, we provide evidence that MDEG-541 induced the degradation of CRBN neosubstrates, including G1 to S phase transition 1/2 (GSPT1/2) and the Polo-like kinase 1 (PLK1). In sum, we have established a CRBN-dependent degrader of relevant cancer targets with activity in gastrointestinal cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Talidomida/farmacologia , Tiazóis/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Talidomida/síntese química , Talidomida/química , Tiazóis/síntese química , Tiazóis/química , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismo
11.
Pancreatology ; 21(5): 912-919, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33824054

RESUMO

BACKGROUND: Oncogenic Kras initiates and drives carcinogenesis in the pancreas by complex signaling networks, including activation of the NFκB pathway. Although recent evidence has shown that oncogenic gains in Nfκb2 collaborate with Kras in the carcinogenesis, no data at the level of genetics for the contribution of Nfκb2 is available so far. METHODS: We used Nfkb2 knock-out mice to decipher the role of the gene in Kras-driven carcinogenesis in vivo. RESULTS: We show that the Nfkb2 gene is needed for cancer initiation and progression in KrasG12D-driven models and this requirement of Nfkb2 is mechanistically connected to proliferative pathways. In contrast, Nfκb2 is dispensable in aggressive pancreatic ductal adenocarcinoma (PDAC) models relying on the simultaneous expression of the Kras oncogene and the mutated tumor suppressor p53. CONCLUSIONS: Our data add to the understanding of context-dependent requirements of oncogenic Kras signaling during pancreatic carcinogenesis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Genes ras , Camundongos , Pâncreas , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
12.
Genes Dev ; 27(3): 288-300, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23355395

RESUMO

Pancreatic exocrine cell plasticity can be observed during development, pancreatitis with subsequent regeneration, and also transformation. For example, acinar-ductal metaplasia (ADM) occurs during acute pancreatitis and might be viewed as a prelude to pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC) development. To elucidate regulatory processes that overlap ductal development, ADM, and the progression of normal cells to PanIN lesions, we undertook a systematic approach to identify the Prrx1 paired homeodomain Prrx1 transcriptional factor as a highly regulated gene in these processes. Prrx1 annotates a subset of pancreatic ductal epithelial cells in Prrx1creER(T2)-IRES-GFP mice. Furthermore, sorted Prrx1(+) cells have the capacity to self-renew and expand during chronic pancreatitis. The two isoforms, Prrx1a and Prrx1b, regulate migration and invasion, respectively, in pancreatic cancer cells. In addition, Prrx1b is enriched in circulating pancreatic cells (Pdx1cre;LSL-Kras(G12D/+);p53(fl/+);R26YFP). Intriguingly, the Prrx1b isoform, which is also induced in ADM, binds the Sox9 promoter and positively regulates Sox9 expression. This suggests a new hierarchical scheme whereby a Prrx1-Sox9 axis may influence the emergence of acinar-ductal metaplasia and regeneration. Furthermore, our data provide a possible explanation of why pancreatic cancer is skewed toward a ductal fate.


Assuntos
Proteínas de Homeodomínio/metabolismo , Pâncreas/patologia , Pâncreas/fisiologia , Neoplasias Pancreáticas/fisiopatologia , Regeneração/fisiologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/citologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOX9/genética
13.
Pathologe ; 42(5): 464-471, 2021 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-34402977

RESUMO

Ductal adenocarcinoma is the most common tumor of the pancreas. Although relatively rare, it poses one of the greatest oncological challenges because of its poor prognosis, which has so far only slightly improved. Progress has been made in the more precise classification and standardization of the morphological assessment. In the current WHO classification, prognostically relevant subtypes are clearly delimited among themselves and from ductal adenocarcinoma not otherwise specified (NOS). In the recent TNM classification, a size-based T­category was introduced. Diagnostically, the histological assessment of the resection specimen is relatively easy; on the other hand, assessment of the fine-needle biopsy from the primary tumor or a liver metastasis is still difficult. The molecular stratification of ductal adenocarcinoma and the other pancreatic neoplasms has made great progress. This not only defined the genetics of tumor entities, but also identified the prognosis and biology of tumor groups on the basis of RNA expression patterns. The range of treatment could be expanded by targeted molecular therapies (especially for patients with BRCA1/2 germline mutations, NTRK- or NRG1-fusions, or oncogenic BRAF and PIK3CA mutations as well as tumors with microsatellite instability (MSI)), even if targeted therapies are currently only available for a minority of patients (<10%).


Assuntos
Neoplasias da Mama , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Feminino , Humanos , Pâncreas , Neoplasias Pancreáticas/genética , Patologia Molecular , Prognóstico
14.
Gut ; 69(8): 1472-1482, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32001555

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) still carries a dismal prognosis with an overall 5-year survival rate of 9%. Conventional combination chemotherapies are a clear advance in the treatment of PDAC; however, subtypes of the disease exist, which exhibit extensive resistance to such therapies. Genomic MYC amplifications represent a distinct subset of PDAC with an aggressive tumour biology. It is clear that hyperactivation of MYC generates dependencies that can be exploited therapeutically. The aim of the study was to find and to target MYC-associated dependencies. DESIGN: We analysed human PDAC gene expression datasets. Results were corroborated by the analysis of the small ubiquitin-like modifier (SUMO) pathway in a large PDAC cohort using immunohistochemistry. A SUMO inhibitor was used and characterised using human and murine two-dimensional, organoid and in vivo models of PDAC. RESULTS: We observed that MYC is connected to the SUMOylation machinery in PDAC. Components of the SUMO pathway characterise a PDAC subtype with a dismal prognosis and we provide evidence that hyperactivation of MYC is connected to an increased sensitivity to pharmacological SUMO inhibition. CONCLUSION: SUMO inhibitor-based therapies should be further developed for an aggressive PDAC subtype.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Idoso , Animais , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Inibidores Enzimáticos/farmacologia , Ésteres/farmacologia , Feminino , Amplificação de Genes , Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Organoides/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Prognóstico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ácidos Sulfônicos , Sumoilação/efeitos dos fármacos , Sumoilação/genética , Transcriptoma/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
16.
Dev Dyn ; 247(6): 854-866, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29532564

RESUMO

BACKGROUND: The plasticity of pancreatic acinar cells to undergo acinar to ductal metaplasia (ADM) has been demonstrated to contribute to the regeneration of the pancreas in response to injury. Sox9 is critical for ductal cell fate and important in the formation of ADM, most likely in concert with a complex hierarchy of, as yet, not fully elucidated transcription factors. RESULTS: By using a mouse model of acute pancreatitis and three dimensional organoid culture of primary pancreatic ductal cells, we herein characterize the Ets-transcription factor Etv5 as a pivotal regulator of ductal cell identity and ADM that acts upstream of Sox9 and is essential for Sox9 expression in ADM. Loss of Etv5 is associated with increased severity of acute pancreatitis and impaired ADM formation leading to delayed tissue regeneration and recovery in response to injury. CONCLUSIONS: Our data provide new insights in the regulation of ADM with implications in our understanding of pancreatic homeostasis, pancreatitis and epithelial plasticity. Developmental Dynamics 247:854-866, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/fisiologia , Pancreatite/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição/metabolismo , Células Acinares/citologia , Células Acinares/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Knockout , Pâncreas/embriologia , Pâncreas/metabolismo , Pancreatite/genética , Fatores de Transcrição SOX9/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
17.
Br J Cancer ; 118(3): 366-377, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29384525

RESUMO

BACKGROUND: Although the mechanistic target of rapamycin (MTOR) kinase, included in the mTORC1 and mTORC2 signalling hubs, has been demonstrated to be active in a significant fraction of patients with pancreatic ductal adenocarcinoma (PDAC), the value of the kinase as a therapeutic target needs further clarification. METHODS: We used Mtor floxed mice to analyse the function of the kinase in context of the pancreas at the genetic level. Using a dual-recombinase system, which is based on the flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies, we generated a novel cellular model, allowing the genetic analysis of MTOR functions in tumour maintenance. Cross-species validation and pharmacological intervention studies were used to recapitulate genetic data in human models, including primary human 3D PDAC cultures. RESULTS: Genetic deletion of the Mtor gene in the pancreas results in exocrine and endocrine insufficiency. In established murine PDAC cells, MTOR is linked to metabolic pathways and maintains the glucose uptake and growth. Importantly, blocking MTOR genetically as well as pharmacologically results in adaptive rewiring of oncogenic signalling with activation of canonical extracellular signal-regulated kinase and phosphoinositide 3-kinase-AKT pathways. We provide evidence that interfering with such adaptive signalling in murine and human PDAC models is important in a subgroup. CONCLUSIONS: Our data suggest developing dual MTORC1/TORC2 inhibitor-based therapies for subtype-specific intervention.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Bortezomib/farmacologia , Camptotecina/farmacologia , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Sobrevivência Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Camundongos , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
18.
Gastroenterology ; 151(3): 540-553.e14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27318148

RESUMO

BACKGROUND & AIMS: The ETS-transcription factor ETV1 is involved in epithelial-mesenchymal transition during pancreatic development and is induced in mouse pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC). We investigated the function of ETV1 in stromal expansion of PDAC and metastasis, as well as its effects on a novel downstream target Sparc, which encodes a matricellular protein found in PDAC stroma that has been associated with invasiveness, metastasis and poor patient outcomes. METHODS: Pancreatic ductal cells were isolated from Pdx1Cre;Kras(G12D/+) mice (PanIN), Pdx1Cre;Kras(G12D/+);p53(fl/+) and Pdx1Cre;Kras(G12D/+);p53(fl/+);Rosa26(YFP) mice (PDAC), and Pdx1Cre;Kras(G12D/+);p53(fl/+);Sparc(-/-) mice. Cells were grown in 3-dimensional organoid culture to analyze morphology, proliferation, and invasion. Human PanIN and PDAC tissues were evaluated for ETV1 expression. Orthotopic pancreatic transplants of ETV1-overexpressing PDAC and respective control cells were performed. RESULTS: ETV1 expression was significantly increased in human PanINs and, even more so, in primary and metastatic PDAC. Analyses of mouse orthotopic xenografts revealed that ETV1 induced significantly larger primary tumors than controls, with significantly increased stromal expansion, ascites and metastases. In 3-dimensional organoids, ETV1 disrupted cyst architecture, induced EMT, and increased invasive capacity. Furthermore, we identified Sparc as a novel functional gene target of Etv1 by luciferase assays, and SPARC and ETV1 proteins co-localized in vivo. Disruption of Sparc abrogates the phenotype of stromal expansion and metastasis found with ETV1 overexpression in vivo. We identified hyaluronan synthase 2 (Has2) as another novel downstream factor of Etv1; that may mediate ETV1's significant expansion of hyaluronic acid in PDAC stroma. Conversely, disruption of Etv1 in PDAC mice (Pdx1Cre;Kras(G12D/+);p53(fl/+);Rosa26(YFP);Cre;Etv1(fl/fl)) reduced levels of SPARC and hyaluronic acid in the stroma. CONCLUSIONS: ETV1 is critical in the desmoplastic stromal expansion and metastatic progression of pancreatic cancer in mice, mediated functionally in part through Sparc and Has2.


Assuntos
Carcinoma Ductal Pancreático/genética , Proteínas de Ligação a DNA/metabolismo , Ductos Pancreáticos/citologia , Neoplasias Pancreáticas/genética , Células Estromais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Transição Epitelial-Mesenquimal/genética , Camundongos , Metástase Neoplásica/genética , Neoplasias Pancreáticas/patologia
19.
Endosc Int Open ; 12(3): E361-E366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38464982

RESUMO

Background and study aims The prognosis for pancreatic cancer remains poor. Molecular diagnostics and customized therapies are becoming increasingly important in clinical routine. Patient-derived, predictive model systems such as organoids have the potential to substantially increase the depth of information from biopsy material by functional and molecular characterization. We compared the extent to which the use of fine-needle aspiration needles (FNA, 22G) or fine-needle biopsy needles (FNB, 22G) influences the generation of pancreatic cancer patient-derived organoids (PDOs) to establish endoscopic standards of organoid technology. Patients and methods Endoscopic ultrasound (EUS)-guided punctures by EUS-FNA and EUS-FNB of pancreatic masses highly suspicious for adenocarcinoma (detected by computed tomography and/or magnetic resonance imaging) were prospectively evaluated. Consecutive patients received EUS-FNA and EUS-FNB in a randomized order without the need to exchange the needle shaft (only the inner needle type (FNA/-B) was exchanged) between the passes. With each needle type, the specimens for histological analysis and for PDOs were obtained separately. Results Fifty patients were enrolled in the study. Histology revealed malignancy in 42 of 50 cases (84%). In total PDOs were generated from 17 patients (34%). Of these, nine were established by FNB only, two by FNA only, and six by both FNA and FNB. Histology revealed malignancy in 13 of 17 PDO cases (76%). In two histologically false-negative cases, PDOs could be established. Conclusions EUS-FNB was superior to EUS-FNA in terms of successful generation of PDOs, although it failed to show statistical significance.

20.
Adv Sci (Weinh) ; : e2307695, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885414

RESUMO

Cancer cells must develop strategies to adapt to the dynamically changing stresses caused by intrinsic or extrinsic processes, or therapeutic agents. Metabolic adaptability is crucial to mitigate such challenges. Considering metabolism as a central node of adaptability, it is focused on an energy sensor, the AMP-activated protein kinase (AMPK). In a subtype of pancreatic ductal adenocarcinoma (PDAC) elevated AMPK expression and phosphorylation is identified. Using drug repurposing that combined screening experiments and chemoproteomic affinity profiling, it is identified and characterized PF-3758309, initially developed as an inhibitor of PAK4, as an AMPK inhibitor. PF-3758309 shows activity in pre-clinical PDAC models, including primary patient-derived organoids. Genetic loss-of-function experiments showed that AMPK limits the induction of ferroptosis, and consequently, PF-3758309 treatment restores the sensitivity toward ferroptosis inducers. The work established a chemical scaffold for the development of specific AMPK-targeting compounds and deciphered the framework for the development of AMPK inhibitor-based combination therapies tailored for PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA