RESUMO
Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two ß-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.
Assuntos
Amiloide , Insulina , Humanos , Amiloide/química , Amiloide/metabolismo , Insulina/química , Insulina/metabolismo , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas , Diabetes Mellitus Tipo 1/tratamento farmacológico , Conformação Proteica , Espectroscopia de Ressonância MagnéticaRESUMO
Soluble amyloid-ß oligomers (AßOs) are proposed to instigate and mediate the pathology of Alzheimer's disease, but the mechanisms involved are not clear. In this study, we reported that AßOs can undergo liquid-liquid phase separation (LLPS) to form liquid-like droplets in vitro. We determined that AßOs exhibited an α-helix conformation in a membrane-mimicking environment of SDS. Importantly, SDS is capable of reconfiguring the assembly of different AßOs to induce their LLPS. Moreover, we found that the droplet formation of AßOs was promoted by strong hydrated anions and weak hydrated cations, suggesting that hydrophobic interactions play a key role in mediating phase separation of AßOs. Finally, we observed that LLPS of AßOs can further promote Aß to form amyloid fibrils, which can be modulated by (-)-epigallocatechin gallate. Our study highlights amyloid oligomers as an important entity involved in protein liquid-to-solid phase transition and reveals the regulatory role of LLPS underlying amyloid protein aggregation, which may be relevant to the pathological process of Alzheimer's disease.
Assuntos
Doença de Alzheimer , Transição de Fase , Agregação Patológica de Proteínas , Humanos , Doença de Alzheimer/fisiopatologia , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Dodecilsulfato de Sódio/química , Agregação Patológica de Proteínas/fisiopatologiaRESUMO
The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of ß-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended ß-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.
Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Humanos , Amiloide/química , Amiloide/metabolismo , Conformação ProteicaRESUMO
Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aß) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aß amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aß40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aß40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Cadeia B de alfa-Cristalina , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/metabolismo , Cadeia B de alfa-Cristalina/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/genética , Amiloide/química , Amiloide/metabolismoRESUMO
Amyloid plaques are a major pathological hallmark involved in Alzheimer's disease and consist of deposits of the amyloid-ß peptide (Aß). The aggregation process of Aß is highly complex, which leads to polymorphous aggregates with different structures. In addition to aberrant aggregation, Aß oligomers can undergo liquid-liquid phase separation (LLPS) and form dynamic condensates. It has been hypothesized that these amyloid liquid droplets affect and modulate amyloid fibril formation. In this review, we briefly introduce the relationship between stress granules and amyloid protein aggregation that is associated with neurodegenerative diseases. Then we highlight the regulatory role of LLPS in Aß aggregation and discuss the potential relationship between Aß phase transition and aggregation. Furthermore, we summarize the current structures of Aß oligomers and amyloid fibrils, which have been determined using nuclear magnetic resonance (NMR) and cryo-electron microscopy (cryo-EM). The structural variations of Aß aggregates provide an explanation for the different levels of toxicity, shed light on the aggregation mechanism and may pave the way towards structure-based drug design for both clinical diagnosis and treatment.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Humanos , Microscopia Crioeletrônica , Agregados Proteicos , Amiloide/química , Amiloide/metabolismo , Agregação Patológica de Proteínas/metabolismoRESUMO
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Assuntos
Proteínas , Prótons , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/químicaRESUMO
Recently, proton-detected magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy has become an attractive tool to study the structure and dynamics of insoluble proteins at atomic resolution. The sensitivity of the employed multidimensional experiments can be systematically improved when both transversal components of the magnetization are transferred simultaneously after an evolution period. The method of preservation of equivalent pathways has been explored in solution-state NMR; however, it does not find widespread application due to relaxation issues connected with increased molecular size. We present here for the first time heteronuclear transverse mixing sequences for correlation experiments at moderate and fast MAS frequencies. Optimal control allows to boost the signal-to-noise ratio (SNR) beyond the expected factor of 2 for each indirect dimension. In addition to the carbon-detected sensitivity-enhanced 2D NCA experiment, we present a novel proton-detected, doubly sensitivity-enhanced 3D hCANH pulse sequence for which we observe a 3-fold improvement in SNR compared to the conventional experimental implementation. The sensitivity gain turned out to be essential to unambiguously characterize a minor fibril polymorph of a human lambda-III immunoglobulin light chain protein that escaped detection so far.
Assuntos
Proteínas , Prótons , Carbono , Humanos , Cadeias Leves de Imunoglobulina , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/químicaRESUMO
Systemic antibody light chains (AL) amyloidosis is characterized by deposition of amyloid fibrils derived from a particular antibody light chain. Cardiac involvement is a major risk factor for mortality. Using MAS solid-state NMR, we studied the fibril structure of a recombinant light chain fragment corresponding to the fibril protein from patient FOR005, together with fibrils formed by protein sequence variants that are derived from the closest germline (GL) sequence. Both analyzed fibril structures were seeded with ex-vivo amyloid fibrils purified from the explanted heart of this patient. We find that residues 11-42 and 69-102 adopt ß-sheet conformation in patient protein fibrils. We identify arginine-49 as a key residue that forms a salt bridge to aspartate-25 in the patient protein fibril structure. In the germline sequence, this residue is replaced by a glycine. Fibrils from the GL protein and from the patient protein harboring the single point mutation R49G can be both heterologously seeded using patient ex-vivo fibrils. Seeded R49G fibrils show an increased heterogeneity in the C-terminal residues 80-102, which is reflected by the disappearance of all resonances of these residues. By contrast, residues 11-42 and 69-77, which are visible in the MAS solid-state NMR spectra, show 13Cα chemical shifts that are highly like patient fibrils. The mutation R49G thus induces a conformational heterogeneity at the C terminus in the fibril state, whereas the overall fibril topology is retained. These findings imply that patient mutations in FOR005 can stabilize the fibril structure.
Assuntos
Amiloide/química , Cadeias Leves de Imunoglobulina/genética , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Mutação , Sequência de Aminoácidos , Amiloide/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em Folha beta , Homologia de SequênciaRESUMO
Positron emission tomography (PET) tracer molecules like thioflavin T specifically recognize amyloid deposition in brain tissue by selective binding to hydrophobic or aromatic surface grooves on the ß-sheet surface along the fibril axis. The molecular basis of this interaction is, however, not well understood. We have employed magic angle spinning (MAS) solid-state NMR spectroscopy to characterize Aß-PET tracer complexes at atomic resolution. We established a titration protocol by using bovine serum albumin as a carrier to transfer hydrophobic small molecules to Aß(1-40) fibrillar aggregates. The same Aß(1-40) amyloid fibril sample was employed in subsequent titrations to minimize systematic errors that potentially arise from sample preparation. In the experiments, the small molecules 13 C-methylated Pittsburgh compound B (PiB) as well as a novel Aß tracer based on a diarylbithiazole (DABTA) scaffold were employed. Classical 13 C-detected as well as proton-detected spectra of protonated and perdeuterated samples with back-substituted protons, respectively, were acquired and analyzed. After titration of the tracers, chemical-shift perturbations were observed in the loop region involving residues Gly25-Lys28 and Ile32-Gly33, thus suggesting that the PET tracer molecules interact with the loop region connecting ß-sheets ß1 and ß2 in Aß fibrils. We found that titration of the PiB derivatives suppressed fibril polymorphism and stabilized the amyloid fibril structure.
Assuntos
Doença de Alzheimer/diagnóstico , Amiloide/química , Compostos de Anilina/química , Corantes Fluorescentes/química , Ressonância Magnética Nuclear Biomolecular , Tomografia por Emissão de Pósitrons , Tiazóis/química , Amiloide/metabolismo , Sítios de Ligação , Isótopos de Carbono , Estrutura MolecularRESUMO
Designed peptides derived from the islet amyloid polypeptide (IAPP) cross-amyloid interaction surface with Aß (termed interaction surface mimics or ISMs) have been shown to be highly potent inhibitors of Aß amyloid self-assembly. However, the molecular mechanism of their function is not well understood. Using solution-state and solid-state NMR spectroscopy in combination with ensemble-averaged dynamics simulations and other biophysical methods including TEM, fluorescence spectroscopy and microscopy, and DLS, we characterize ISM structural preferences and interactions. We find that the ISM peptide R3-GI is highly dynamic, can adopt a ß-like structure, and oligomerizes into colloid-like assemblies in a process that is reminiscent of liquid-liquid phase separation (LLPS). Our results suggest that such assemblies yield multivalent surfaces for interactions with Aß40. Sequestration of substrates into these colloid-like structures provides a mechanistic basis for ISM function and the design of novel potent anti-amyloid molecules.
Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Fragmentos de Peptídeos/antagonistas & inibidores , Peptídeos/química , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Especificidade por SubstratoRESUMO
Despite their importance for antibody architecture and design, the principles governing antibody domain stability are still not understood in sufficient detail. Here, to address this question, we chose a domain from the invariant part of IgG, the CH2 domain. We found that compared with other Ig domains, the isolated CH2 domain is a surprisingly unstable monomer, exhibiting a melting temperature of â¼44 °C. We further show that the presence of an additional C-terminal lysine in a CH2 variant substantially increases the melting temperature by â¼14 °C relative to CH2 WT. To explore the molecular mechanism of this effect, we employed biophysical approaches to probe structural features of CH2. The results revealed that Lys101 is key for the formation of three secondary structure elements: the very C-terminal ß-strand and two adjacent α-helices. We also noted that a dipole interaction between Lys101 and the nearby α-helix, is important for stabilizing the CH2 architecture by protecting the hydrophobic core. Interestingly, this interaction between the α-helix and C-terminal charged residues is highly conserved in antibody domains, suggesting that it represents a general mechanism for maintaining their integrity. We conclude that the observed interactions involving terminal residues have practical applications for defining domain boundaries in the development of antibody therapeutics and diagnostics.
Assuntos
Imunoglobulina G/química , Lisina/química , Motivos de Aminoácidos , Humanos , Domínios de Imunoglobulina , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Lisina/genética , Lisina/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Temperatura de TransiçãoRESUMO
Quantification of dipolar couplings in biological solids is important for the understanding of dynamic processes. Under Magic Angle Spinning (MAS), order parameters are normally obtained by recoupling of anisotropic interactions involving the application of radio frequency pulses. We have recently shown that amide backbone order parameters can be estimated accurately in a spin-echo experiment in case the rotor spinning angle is slightly mis-calibrated. In this work, we apply this method to determine methyl order parameters in a deuterated sample of the SH3 domain of chicken α-spectrin in which the methyl containing side chains valine and leucine are selectively protonated.
Assuntos
Anisotropia , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Galinhas , Deutério , Leucina/química , Proteínas/química , Espectrina/química , Valina/químicaRESUMO
Sensitivity and resolution together determine the quality of NMR spectra in biological solids. For high-resolution structure determination with solid-state NMR, proton-detection emerged as an attractive strategy in the last few years. Recent progress in probe technology has extended the range of available MAS frequencies up to above 100 kHz, enabling the detection of resolved resonances from sidechain protons, which are important reporters of structure. Here we characterise the interplay between MAS frequency in the newly available range of 70-110 kHz and proton content on the spectral quality obtainable on a 1 GHz spectrometer for methyl resonances. Variable degrees of proton densities are tested on microcrystalline samples of the α-spectrin SH3 domain with selectively protonated methyl isotopomers (CH3, CH2D, CHD2) in a perdeuterated matrix. The experimental results are supported by simulations that allow the prediction of the sensitivity outside this experimental frequency window. Our results facilitate the selection of the appropriate labelling scheme at a given MAS rotation frequency.
Assuntos
Metilação , Ressonância Magnética Nuclear Biomolecular/métodos , Prótons , Deutério/química , Sensibilidade e Especificidade , Espectrina/química , Domínios de Homologia de srcRESUMO
Magic-angle spinning (MAS) is an essential ingredient in a wide variety of solid-state NMR experiments. The standard procedures to adjust the rotor angle are not highly accurate, resulting in a slight misadjustment of the rotor from the magic angle ( θRL=tan-12 ) on the order of a few millidegrees. This small missetting has no significant impact on the overall spectral resolution, but is sufficient to reintroduce anisotropic interactions. Shown here is that site-specific 1 H-15 N dipolar couplings can be accurately measured in a heavily deuterated protein. This method can be applied at arbitrarily high MAS frequencies, since neither rotor synchronization nor particularly high radiofrequency field strengths are required. The off-MAS method allows the quantification of order parameters for very dynamic residues, which often escape an analysis using existing methods.
Assuntos
Isótopos de Carbono/análise , Deutério/química , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Nitrogênio/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Espectrina/química , Domínios de Homologia de src , Animais , Anisotropia , GalinhasRESUMO
Dipolar recoupling in solid-state NMR is an essential method for establishing correlations between nuclei that are close in space. In applications on protein samples, the traditional experiments like ramped and adiabatic DCP suffer from the fact that dipolar recoupling occurs only within a limited volume of the sample. This selection is dictated by the radiofrequency (rf) field inhomogeneity profile of the excitation solenoidal coil. We employ optimal control strategies to design dipolar recoupling sequences with substantially larger responsive volume and increased sensitivity. We show that it is essential to compensate for additional temporal modulations induced by sample rotation in a spatially inhomogeneous rf field. Such modulations interfere with the pulse sequence and decrease its performance. Using large-scale optimizations we developed pulse schemes for magnetization transfer from amide nitrogen to carbonyl (NCO) as well as aliphatic carbons (NCA). Our experiments yield a signal intensity increased by a factor of 1.5 and 2.0 for NCA and NCO transfers, respectively, compared to conventional ramped DCP sequences. Consistent results were obtained using several biological samples and NMR instruments.
Assuntos
Espectroscopia de Ressonância Magnética/métodos , Simulação por ComputadorRESUMO
Alzheimer's disease is characterized by deposition of the amyloid ß-peptide (Aß) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Aß peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Aß solution. We find that sulindac sulfide induced Aß aggregates are structurally homogeneous. The C-terminal part of the peptide adopts a ß-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Aß peptide in the aggregate.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/fisiologia , Sulindaco/análogos & derivados , Sequência de Aminoácidos , Peptídeos beta-Amiloides/toxicidade , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/toxicidade , Agregados Proteicos/efeitos dos fármacos , Sulindaco/farmacologiaRESUMO
Alzheimer disease is the most severe neurodegenerative disease worldwide. In the past years, a plethora of small molecules interfering with amyloid-ß (Aß) aggregation has been reported. However, their mode of interaction with amyloid fibers is not understood. Non-steroidal anti-inflammatory drugs (NSAIDs) are known γ-secretase modulators; they influence Aß populations. It has been suggested that NSAIDs are pleiotrophic and can interact with more than one pathomechanism. Here we present a magic angle spinning solid-state NMR study demonstrating that the NSAID sulindac sulfide interacts specifically with Alzheimer disease Aß fibrils. We find that sulindac sulfide does not induce drastic architectural changes in the fibrillar structure but intercalates between the two ß-strands of the amyloid fibril and binds to hydrophobic cavities, which are found consistently in all analyzed structures. The characteristic Asp(23)-Lys(28) salt bridge is not affected upon interacting with sulindac sulfide. The primary binding site is located in the vicinity of residue Gly(33), a residue involved in Met(35) oxidation. The results presented here will assist the search for pharmacologically active molecules that can potentially be employed as lead structures to guide the design of small molecules for the treatment of Alzheimer disease.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/química , Sulindaco/análogos & derivados , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios não Esteroides , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estrutura Secundária de Proteína , Sulindaco/química , Sulindaco/uso terapêuticoRESUMO
In recent years, MAS solid-state NMR has emerged as a technique for the investigation of soluble protein complexes. It was found that high molecular weight complexes do not need to be crystallized in order to obtain an immobilized sample for solid-state NMR investigations. Sedimentation induced by sample rotation impairs rotational diffusion of proteins and enables efficient dipolar coupling based cross polarization transfers. In addition, viscosity contributes to the immobilization of the molecules in the sample. Natural Deep Eutectic Solvents (NADES) have very high viscosities, and can replace water in living organisms. We observe a considerable amount of cross polarization transfers for NADES solvents, even though their molecular weight is too low to yield significant sedimentation. We discuss how viscosity and sedimentation both affect the quality of the obtained experimental spectra. The FROSTY/sedNMR approach holds the potential to study large protein complexes, which are otherwise not amenable for a structural characterization using NMR. We show that using this method, backbone assignments of the symmetric proteasome activator complex (1.1MDa), and high quality correlation spectra of non-symmetric protein complexes such as the prokaryotic ribosome 50S large subunit binding to trigger factor (1.4MDa) are obtained.
Assuntos
Proteínas Imobilizadas , Animais , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , SolventesRESUMO
Variable (V) domains of antibodies are essential for antigen recognition by our adaptive immune system. However, some variants of the light chain V domains (VL) form pathogenic amyloid fibrils in patients. It is so far unclear which residues play a key role in governing these processes. Here, we show that the conserved residue 2 of VL domains is crucial for controlling its thermodynamic stability and fibril formation. Hydrophobic side chains at position 2 stabilize the domain, whereas charged residues destabilize and lead to amyloid fibril formation. NMR experiments identified several segments within the core of the VL domain to be affected by changes in residue 2. Furthermore, molecular dynamic simulations showed that hydrophobic side chains at position 2 remain buried in a hydrophobic pocket, and charged side chains show a high flexibility. This results in a predicted difference in the dissociation free energy of â¼10 kJ mol(-1), which is in excellent agreement with our experimental values. Interestingly, this switch point is found only in VL domains of the κ family and not in VLλ or in VH domains, despite a highly similar domain architecture. Our results reveal novel insight into the architecture of variable domains and the prerequisites for formation of amyloid fibrils. This might also contribute to the rational design of stable variable antibody domains.
Assuntos
Amiloide/química , Anticorpos de Cadeia Única/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Terciária de ProteínaRESUMO
We introduce a labeling scheme for magic angle spinning (MAS) solid-state NMR that is based on deuteration in combination with dilution of the carbon spin system. The labeling strategy achieves spectral editing by simplification of the HαCα and aliphatic side chain spectral region. A reduction in both proton and carbon spin density in combination with fast spinning (≥50 kHz) is essential to retrieve artifact-free (13)C-R1 relaxation data for aliphatic carbons. We obtain good agreement between the NMR experimental data and order parameters extracted from a molecular dynamics (MD) trajectory, which indicates that carbon based relaxation parameters can yield complementary information on protein backbone as well as side chain dynamics.