Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant J ; 65(4): 571-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21219506

RESUMO

Shoot branching is one of the major determinants of plant architecture. Polar auxin transport in stems is necessary for the control of bud outgrowth by a dominant apex. Here, we show that following decapitation in pea (Pisum sativum L.), the axillary buds establish directional auxin export by subcellular polarization of PIN auxin transporters. Apical auxin application on the decapitated stem prevents this PIN polarization and canalization of laterally applied auxin. These results support a model in which the apical and lateral auxin sources compete for primary channels of auxin transport in the stem to control the outgrowth of axillary buds.


Assuntos
Ácidos Indolacéticos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Caules de Planta/crescimento & desenvolvimento
2.
Mol Syst Biol ; 6: 447, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21179019

RESUMO

Plant development is exceptionally flexible as manifested by its potential for organogenesis and regeneration, which are processes involving rearrangements of tissue polarities. Fundamental questions concern how individual cells can polarize in a coordinated manner to integrate into the multicellular context. In canalization models, the signaling molecule auxin acts as a polarizing cue, and feedback on the intercellular auxin flow is key for synchronized polarity rearrangements. We provide a novel mechanistic framework for canalization, based on up-to-date experimental data and minimal, biologically plausible assumptions. Our model combines the intracellular auxin signaling for expression of PINFORMED (PIN) auxin transporters and the theoretical postulation of extracellular auxin signaling for modulation of PIN subcellular dynamics. Computer simulations faithfully and robustly recapitulated the experimentally observed patterns of tissue polarity and asymmetric auxin distribution during formation and regeneration of vascular systems and during the competitive regulation of shoot branching by apical dominance. Additionally, our model generated new predictions that could be experimentally validated, highlighting a mechanistically conceivable explanation for the PIN polarization and canalization of the auxin flow in plants.


Assuntos
Polaridade Celular , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Feixe Vascular de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Simulação por Computador , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/metabolismo , Transdução de Sinais
3.
Nat Commun ; 11(1): 3508, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665554

RESUMO

Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration.


Assuntos
Compostos Heterocíclicos com 3 Anéis/metabolismo , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Pisum sativum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Pisum sativum/genética , Reguladores de Crescimento de Plantas/metabolismo
4.
Sci Rep ; 6: 35955, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824063

RESUMO

Apical dominance is one of the fundamental developmental phenomena in plant biology, which determines the overall architecture of aerial plant parts. Here we show apex decapitation activated competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels, and dormancy and initiation status of axillary buds. Auxin flow was manipulated by lateral stem wounds or chemically by auxin efflux inhibitors 2,3,5-triiodobenzoic acid (TIBA), 1-N-naphtylphtalamic acid (NPA), or protein synthesis inhibitor cycloheximide (CHX) treatments, which served to interfere with axillary bud competition. Redirecting auxin flow to different points influenced which bud formed the outgrowing and dominant shoot. The obtained results proved that competition between upper and lower axillary buds as secondary auxin sources is based on the same auxin canalization principle that operates between the shoot apex and axillary bud.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Pisum sativum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Transporte Biológico , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética
5.
Mol Plant ; 1(2): 270-84, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19825539

RESUMO

We describe an inexpensive and reliable detector for measuring NO emitted in the gas phase from plants. The method relies on the use of a strong oxidizer to convert NO to NO2 and subsequent capture of NO2 by a Griess reagent trap. The set-up approaches the sensitivity for NO comparable to that of instruments based on chemiluminescence and photoacoustic detectors. We demonstrate the utility of our set-up by measuring NO produced by a variety of well established plant sources. NO produced by nitrate reductase (NR) in tobacco leaves and barley aleurone was readily detected, as was the production of NO from nitrite by the incubation medium of barley aleurone. Arabidopsis mutants that overproduce NO or lack NO-synthase (AtNOS1) also displayed the expected NO synthesis phenotype when assayed by our set-up. We could also measure NO production from elicitor-treated suspension cultured cells using this set-up. Further, we have focused on the detection of NO by a widely used fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM). Our work points to the pitfalls that must be avoided when using DAF-FM to detect the production of NO by plant tissues. In addition to the dramatic effects that pH can have on fluorescence from DAF-FM, the widely used NO scavengers 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) can produce anomalous and unexpected results. Perhaps the most serious drawback of DAF-FM is its ability to bind to dead cells and remain NO-sensitive.


Assuntos
Arabidopsis/metabolismo , Células Cultivadas/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Fluoresceínas , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Cinética , Luminescência , Mutação , Nitratos/análise , Óxido Nítrico/análise , Óxido Nítrico/biossíntese , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Reprodutibilidade dos Testes , Nicotiana/metabolismo
6.
Planta ; 223(4): 805-12, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16151848

RESUMO

The seeds of many plant species are dormant at maturity and dormancy loss is a prerequisite for germination. Numerous environmental and chemical treatments are known to lessen or remove seed dormancy, but the biochemical changes that occur during this change of state are poorly understood. Several lines of research have implicated nitric oxide (NO) as a participant in this process. Here, we show that dormant seeds of Arabidopsis thaliana (L.) Heynh. will germinate following treatment with the NO donor sodium nitroprusside (SNP), cyanide (CN), nitrite or nitrate. In all cases, the NO scavenger c-PTIO effectively promotes the maintenance of seed dormancy. c-PTIO does not, however, inhibit germination of fully after-ripened seeds, and c-PTIO does not interact directly with nitrite, nitrate or CN. We also show that volatile CN effectively breaks dormancy of Arabidopsis seeds, and that CN is the volatile compound in SNP that promotes dormancy loss. Our data support the hypothesis that NO is a signaling molecule that plays an important role in the loss of seed dormancy.


Assuntos
Arabidopsis/efeitos dos fármacos , Cianetos/farmacologia , Nitratos/farmacologia , Óxido Nítrico/metabolismo , Nitritos/farmacologia , Nitroprussiato/farmacologia , Sementes/efeitos dos fármacos , Arabidopsis/embriologia , Arabidopsis/metabolismo , Benzoatos/farmacologia , Óxidos N-Cíclicos/metabolismo , Óxidos N-Cíclicos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Germinação/efeitos dos fármacos , Imidazóis/farmacologia , Nitroprussiato/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Sementes/crescimento & desenvolvimento , Fatores de Tempo
7.
Genes Dev ; 20(20): 2902-11, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17043314

RESUMO

Plant development is characterized by a profound ability to regenerate and form tissues with new axes of polarity. An unsolved question concerns how the position within a tissue and cues from neighboring cells are integrated to specify the polarity of individual cells. The canalization hypothesis proposes a feedback effect of the phytohormone auxin on the directionality of intercellular auxin flow as a means to polarize tissues. Here we identify a cellular and molecular mechanism for canalization. Local auxin application, wounding, or auxin accumulation during de novo organ formation lead to rearrangements in the subcellular polar localization of PIN auxin transport components. This auxin effect on PIN polarity is cell-specific, does not depend on PIN transcription, and involves the Aux/IAA-ARF (indole-3-acetic acid-auxin response factor) signaling pathway. Our data suggest that auxin acts as polarizing cue, which links individual cell polarity with tissue and organ polarity through control of PIN polar targeting. This feedback regulation provides a conceptual framework for polarization during multiple regenerative and patterning processes in plants.


Assuntos
Ácidos Indolacéticos/química , Proteínas de Plantas/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Pisum sativum , Fototropismo , Reguladores de Crescimento de Plantas , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Transdução de Sinais , Transcrição Gênica
8.
Planta Med ; 68(2): 178-80, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11859476

RESUMO

Variability in both the content and quality of essential oil was observed in herb and leaf drugs in dependence on the harvest cut height of lemon balm (Melissa officinalis L. cv. Citra). Three different cuts were carried out on the respective plants. The oil content in the herb was highest in the top third (0.13 % V/m), satisfactory in the herb including both the top and middle thirds (0.08 % V/m) and lowest in the whole herb (0.06 % V/m). The oil content in the leaves of the respective herbs was in the range 0.39 % - 0.14 % V/m (top third part - whole aerial part). The percentage of citrals, linalool and beta-caryophyllene in essential oil decreased in the basipetal direction, whilst the amounts of beta-caryophyllene oxide and citronellal increased in the same direction. Citrals (A and B): 55.79 % in the top third part of the herb, 48.46 % in the whole herb, 59.74 % and 56.87 % in the leaves from that parts, respectively. Similarly, beta-caryophyllene: 5.01 %, 3.87 %, 6.97 %, 5.13 %; beta-caryophyllene oxide: 17.19 %, 24.07 %, 15.64 %, 17.82 %; citronellal: 2.73 %, 5.51 %, 2.82 %, 6.44 %.


Assuntos
Lamiaceae , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/química , Extratos Vegetais/química , Extratos Vegetais/normas , Folhas de Planta/química , Caules de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA