Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Bioorg Med Chem Lett ; 29(12): 1454-1458, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31005442

RESUMO

The connection between Netherton syndrome and overactivation of epidermal/dermal proteases particularly KLK5 has been well established. To treat sufferers of this severe condition we wished to develop a topical KLK5 inhibitor in order to normalise epidermal shedding and reduce the associated inflammation and itching. In this paper we describe structure-based optimisation of a series of brightly coloured weak KLK5 inhibitors into colourless, non-irritant molecules with good KLK5 activity and selectivity over a range of serine proteases.


Assuntos
Desenho de Fármacos , Calicreínas/antagonistas & inibidores , Síndrome de Netherton/tratamento farmacológico , Humanos
2.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 385-391, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045568

RESUMO

The inhibition of kallikrein 5 (KLK5) has been identified as a potential strategy for treatment of the genetic skin disorder Netherton syndrome, in which loss-of-function mutations in the SPINK5 gene lead to down-regulation of the endogenous inhibitor LEKTI-1 and profound skin-barrier defects with severe allergic manifestations. To aid in the development of a medicine for this target, an X-ray crystallographic system was developed to facilitate fragment-guided chemistry and knowledge-based drug-discovery approaches. Here, the development of a surrogate crystallographic system in place of KLK5, which proved to be challenging to crystallize, is described. The biochemical robustness of the crystallographic surrogate and the suitability of the system for the study of small nonpeptidic fragments and lead-like molecules are demonstrated.


Assuntos
Benzamidinas/química , Calicreínas/química , Inibidores de Proteases/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Benzamidinas/farmacologia , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Descoberta de Drogas , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Calicreínas/antagonistas & inibidores , Calicreínas/genética , Calicreínas/metabolismo , Cinética , Modelos Moleculares , Mutação , Síndrome de Netherton/tratamento farmacológico , Síndrome de Netherton/enzimologia , Inibidores de Proteases/farmacologia , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Eletricidade Estática , Especificidade por Substrato
3.
BMC Genomics ; 8: 194, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17597519

RESUMO

BACKGROUND: Mammalian angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. RESULTS: Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple sequence alignment and molecular modelling have been employed to characterise the predicted ACE3 protein. In mouse, rat, cow and dog, the predicted protein has mutations in some of the critical residues involved in catalysis, including the catalytic Glu in the HEXXH zinc binding motif which is Gln, and ESTs or reverse-transcription PCR indicate that the gene is expressed. In humans, the predicted ACE3 protein has an intact HEXXH motif, but there are other deletions and insertions in the gene and no ESTs have been identified. CONCLUSION: In the genomes of several mammalian species there is a gene that encodes a novel, single domain ACE-like protein, ACE3. In mouse, rat, cow and dog ACE3, the catalytic Glu is replaced by Gln in the putative zinc binding motif, indicating that in these species ACE3 would lack catalytic activity as a zinc metalloprotease. In humans, no evidence was found that the ACE3 gene is expressed and the presence of deletions and insertions in the sequence indicate that ACE3 is a pseudogene.


Assuntos
Perfilação da Expressão Gênica , Genômica/métodos , Peptidil Dipeptidase A/genética , Sequência de Aminoácidos , Animais , Bovinos , Cães , Etiquetas de Sequências Expressas , Humanos , Metaloproteases/química , Camundongos , Dados de Sequência Molecular , Peptidil Dipeptidase A/química , Ratos , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
4.
J Chem Inf Model ; 46(2): 708-16, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16563001

RESUMO

The metallopeptidase Angiotensin Converting Enzyme (ACE) is an important drug target for the treatment of hypertension, heart, kidney, and lung disease. Recently, a close and unique human ACE homologue termed ACE2 has been identified and found to be an interesting new cardiorenal disease target. With the recently resolved inhibitor-bound ACE2 crystal structure available, we have attempted a structure-based approach to identify novel potent and selective inhibitors. Computational approaches focus on pharmacophore-based virtual screening of large compound databases. Selectivity was ensured by initial screening for ACE inhibitors within an internal database and the Derwent World Drug Index, which could be reduced to zero false positives and 0.1% hit rate, respectively. An average hit reduction of 0.44% was achieved with a five feature hypothesis, searching approximately 3.8 million compounds from various commercial databases. Seventeen compounds were selected based on high fit values as well as diverse structure and subjected to experimental validation in a bioassay. We show that all compounds displayed an inhibitory effect on ACE2 activity, the six most promising candidates exhibiting IC50 values in the range of 62-179 microM.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Simulação por Computador , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Biológicos , Relação Estrutura-Atividade , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Ligantes , Lisinopril/química , Lisinopril/farmacologia , Modelos Moleculares , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/efeitos dos fármacos , Ligação Proteica
5.
Fungal Genet Biol ; 40(2): 146-58, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14516767

RESUMO

In silico analysis of the genome sequence of the human pathogenic fungus Candida albicans identified an open reading frame encoding a putative fourth member of the chitin synthase gene family. This gene, named CaCHS8, encodes an 1105 amino acid open reading frame with the conserved motifs characteristic of class I zymogenic chitin synthases with closest sequence similarity to the non-essential C. albicans class I CHS2 gene. Although the CaCHS8 gene was expressed in both yeast and hyphal cells, homozygous chs8 Delta null mutants had normal growth rates, cellular morphologies and chitin contents. The null mutant strains had a 25% reduction in chitin synthase activity and were hypersensitive to Calcofluor White. A chs2 Delta chs8 Delta double mutant had less than 3% of normal chitin synthase activity and had increased wall glucan and decreased mannan but was unaffected in growth or cell morphology. The C. albicans class I double mutant did not exhibit a bud-lysis phenotype as found in the class I chs1 Delta mutant of Saccharomyces cerevisiae. Therefore, C. albicans has four chitin synthases with two non-essential class I Chs isoenzymes that contribute collectively to more than 97% of the in vitro chitin synthase activity.


Assuntos
Candida albicans/enzimologia , Candida albicans/genética , Quitina Sintase/genética , Quitina Sintase/metabolismo , Sequência de Aminoácidos , Benzenossulfonatos/metabolismo , Benzenossulfonatos/farmacologia , Candida albicans/citologia , Candida albicans/crescimento & desenvolvimento , Parede Celular/química , Quitina/biossíntese , Quitina/genética , Quitina Sintase/química , Farmacorresistência Fúngica , Deleção de Genes , Expressão Gênica , Genes Fúngicos , Glucanos/análise , Mananas/análise , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA