Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(14): 2959-2976.e22, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339633

RESUMO

Snakes are a remarkable squamate lineage with unique morphological adaptations, especially those related to the evolution of vertebrate skeletons, organs, and sensory systems. To clarify the genetic underpinnings of snake phenotypes, we assembled and analyzed 14 de novo genomes from 12 snake families. We also investigated the genetic basis of the morphological characteristics of snakes using functional experiments. We identified genes, regulatory elements, and structural variations that have potentially contributed to the evolution of limb loss, an elongated body plan, asymmetrical lungs, sensory systems, and digestive adaptations in snakes. We identified some of the genes and regulatory elements that might have shaped the evolution of vision, the skeletal system and diet in blind snakes, and thermoreception in infrared-sensitive snakes. Our study provides insights into the evolution and development of snakes and vertebrates.


Assuntos
Genoma , Serpentes , Animais , Serpentes/genética , Adaptação Fisiológica , Aclimatação , Evolução Molecular , Filogenia , Evolução Biológica
3.
Proc Natl Acad Sci U S A ; 119(13): e2116342119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35286217

RESUMO

SignificanceTo adapt to arboreal lifestyles, treefrogs have evolved a suite of complex traits that support vertical movement and gliding, thus presenting a unique case for studying the genetic basis for traits causally linked to vertical niche expansion. Here, based on two de novo-assembled Asian treefrog genomes, we determined that genes involved in limb development and keratin cytoskeleton likely played a role in the evolution of their climbing systems. Behavioral and morphological evaluation and time-ordered gene coexpression network analysis revealed the developmental patterns and regulatory pathways of the webbed feet used for gliding in Rhacophorus kio.


Assuntos
Locomoção , Árvores , Adaptação Fisiológica/genética , Animais , Anuros , Evolução Biológica , Fenômenos Biomecânicos , Genômica , Humanos , Locomoção/genética
4.
Reprod Biomed Online ; 49(1): 103856, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657291

RESUMO

RESEARCH QUESTION: Does the observed correlation between dyslipidaemia and endometriosis indicate a bidirectional causal association? DESIGN: Bidirectional Mendelian randomization was used to investigate the causal association between lipid traits and endometriosis. Drug-target Mendelian randomization was used to explore potential drug-target genes for managing endometriosis. In cases where lipid-mediated effects via specific drug targets were significant, aggregate analyses, such as summary-data-based Mendelian randomization and colocalization methods, were introduced to validate the outcomes. Mediation analyses supplemented these evaluations. RESULTS: The bidirectional Mendelian randomization results suggested that genetically predicted triglyceride (OR 1.15, 95% CI 1.08-1.23), high-density lipoprotein cholesterol (OR 0.87, 95% CI 0.81-0.94), low-density lipoprotein cholesterol (OR 1.20, 95% CI 1.06-1.34) and apolipoprotein A (OR 0.90, 95% CI 0.83-0.96) concentrations were causally associated with endometriosis. Reverse Mendelian randomization results revealed that genetically proxied endometriosis was causally associated with triglyceride concentration (OR 1.02, 95% CI 1.01-1.02). In drug-target Mendelian randomization, genetic mimicry in proprotein convertase subtilisin/kexin type 9 (PCSK9) (OR 1.40, 95% CI 1.13-1.72), apolipoprotein B (APOB) (OR 1.49, 95% CI 1.21-1.86) and angiopoietin-related protein 3 (ANGPTL3) (OR 1.57, 95% CI 1.14-2.16) was significantly associated with the risk of endometriosis stages 1-2. CONCLUSION: There is a potential bidirectional causal association between endometriosis and dyslipidaemia. Genetic mimicry of PCSK9, APOB and ANGPTL3 is associated with the risk of early-stage endometriosis. The development of lipid-lowering drugs to treat endometriosis is of potential clinical interest.


Assuntos
Endometriose , Análise da Randomização Mendeliana , Humanos , Feminino , Endometriose/genética , Endometriose/tratamento farmacológico , Dislipidemias/genética , Dislipidemias/tratamento farmacológico , Dislipidemias/epidemiologia , Hipolipemiantes/uso terapêutico , Pró-Proteína Convertase 9/genética , Lipídeos/sangue , Triglicerídeos/sangue , Predisposição Genética para Doença
5.
Phys Chem Chem Phys ; 26(5): 3869-3879, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226609

RESUMO

Rare-earth-doped silica-based composite glasses (Re-SCGs) are widely used as high-quality laser gain media in defense, aerospace, energy, power, and medical applications. The variable regional chemical environments of Re-SCGs can induce new photoluminescence properties of rare-earth ions but can cause the selective aggregation of rare-earth ions, limiting the application of Re-SCGs in the field of high-power lasers. Here, topological engineering is proposed to adjust the degree of cross-linking of phase-separation network chains in Re-SCGs. A combination of experimental and theoretical characterization techniques suggested that the selective aggregation of rare-earth ions originates from the formation of phase-separated structures in glasses. The decomposition of nanoscale phase separation structures to the sub-nanometer scale, enabled by incorporating Al3+ ions, not only maintains the high luminescence efficiency of rare earth ions but also increases light transmittance and reduces light scattering. Furthermore, our investigation encompassed the exploration of the inhibitory mechanism of Al3+ ions on phase-separation structures, as well as their influence on the spectral characteristics of Re-SCGs. This work provides a new design concept for composite glass materials doped with rare-earth ions and could broaden their application in the field of high-power lasers.

6.
Chem Soc Rev ; 52(23): 8319-8373, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37920962

RESUMO

High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.

7.
J Asian Nat Prod Res ; 26(1): 4-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888783

RESUMO

Seven new monoterpene alkaloids (1 - 7), along with 16 known analogues, were isolated from an aqueous decoction of the hook-bearing stems of Uncaria rhynchophylla (Gou-teng). Their structures were determined by spectroscopic data analysis, single crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compounds 1 and 2 are stereoisomers belonging to a novel type of pseudoindoxyl monoterpene alkaloids, 3 is the first monoterpene furoindole alkaloid from nature, and 4 - 7 are derivatives of the known monoterpene alkaloids featuring different structures.


Assuntos
Alcaloides , Uncaria , Alcaloides Indólicos/química , Uncaria/química , Monoterpenos
8.
Anal Chem ; 95(18): 7150-7157, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37094096

RESUMO

We report an enzyme cascade with horseradish peroxidase-based readout for screening human arginase-1 (hArg1) activity. We combined the four enzymes hArg1, ornithine decarboxylase, putrescine oxidase, and horseradish peroxidase in a reaction cascade that generated colorimetric or fluorescent signals in response to hArg1 activity and used this cascade to assay wild-type and variant hArg1 sequences as soluble enzymes and displayed on the surface of Escherichia coli. We screened a curated 13-member hArg1 library covering mutations that modified the electrostatic environment surrounding catalytic residues D128 and H141, and identified the R21E variant with a 13% enhanced catalytic turnover rate compared to wild type. Our scalable one-pot single-step arginase assay with continuous kinetic readout is amenable to high-throughput screening and directed evolution of arginase libraries and testing drug candidates for arginase inhibition.


Assuntos
Arginase , Ensaios de Triagem em Larga Escala , Humanos , Arginase/genética , Arginase/química , Peroxidase do Rábano Silvestre , Mutação , Catálise
9.
Anal Chem ; 95(33): 12313-12320, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37565815

RESUMO

The detection of formic acid vapor in the usage environment is extremely important for human health and safety. The utilization of metal-organic frameworks (MOFs) for the detection of gaseous molecules is an attractive strategy. However, the rational design and construction of MOF-based gas sensors with high sensitivity and mechanical stability remain a significant challenge. In this study, a simple approach is reported to fabricate colorimetric aerogel sensors assembled from MOF particles via ice template-assisted methods. As the aerogel sensor with staggered lamellae structures significantly provides a high air-volume intake of flowing gas, it generates a sufficient probability of contact reactions for highly mobile target molecules. Additionally, it enhances the mechanical stability by providing stress resistance between the staggered lamellae structures. Compared to conventional film sensors for the detection of formic acid molecules, aerogel sensors exhibit an 8-fold lower limit of detection, 15-fold better sensitivity at low concentrations, 34-fold faster response time, and higher stability. This approach shows great potential for rapid and real-time detection of target molecules as well as superior performance in the structural construction of various gas-sensitive materials.

10.
Small ; 19(5): e2206196, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36408769

RESUMO

Heterogeneous electrocatalysis typically depends on the surface electronic states of active sites. Modulating the surface charge state of an electrocatalysts can be employed to improve performance. Among all the investigated materials, nickel (Ni)-based catalysts are the only non-noble-metal-based alternatives for both hydrogen oxidation and evolution reactions (HOR and HER) in alkaline electrolyte, while their activities should be further improved because of the unfavorable hydrogen adsorption behavior. Hereto, Ni with exceptional HOR electrocatalytic performance by changing the d-band center by metal oxides interface coupling formed in situ is endowed. The resultant MoO2 coupled Ni heterostructures exhibit an apparent HOR activity, even approaching to that of commercial 20% Pt/C benchmark, but with better long-term stability in alkaline electrolyte. An exceptional HER performance is also achieved by the Ni-MoO2 heterostructures. The experiment results are rationalized by the theoretical calculations, which indicate that coupling MoO2 with Ni results in the downshift of d-band center of Ni, and thus weakens hydrogen adsorption and benefits for hydroxyl adsorption. This concept is further proved by other metal oxides (e.g., CeO2 , V2 O3 , WO3 , Cr2 O3 )-formed Ni-based heterostructures to engineer efficient hydrogen electrocatalysts.

11.
Small ; 19(27): e2300194, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965012

RESUMO

Versatile electrocatalysis at higher current densities for natural seawater splitting to produce hydrogen demands active and robust catalysts to overcome the severe chloride corrosion, competing chlorine evolution, and catalyst poisoning. Hereto, the core-shell-structured heterostructures composed of amorphous NiFe hydroxide layer capped Ni3 S2 nanopyramids which are directly grown on nickel foam skeleton (NiS@LDH/NF) are rationally prepared to regulate cooperatively electronic structure and mass transport for boosting oxygen evolution reaction (OER) performance at larger current densities. The prepared NiS@LDH/NF delivers the anodic current density of 1000 mA cm-2 at the overpotential of 341 mV in 1.0 m KOH seawater. The feasible surface reconstruction of Ni3 S2 -FeNi LDH interfaces improves the chemical stability and corrosion resistance, ensuring the robust electrocatalytic activity in seawater electrolytes for continuous and stable oxygen evolution without any hypochlorite production. Meanwhile, the designed Ni3 S2 nanopyramids coated with FeNi2 P layer (NiS@FeNiP/NF) still exhibit the improved hydrogen evolution reaction (HER) activity in 1.0 m KOH seawater. Furthermore, the NiS@FeNiP/NF||NiS@LDH/NF pair requires cell voltage of 1.636 V to attain 100 mA cm-2 with a 100% Faradaic efficiency, exhibiting tremendous potential for hydrogen production from seawater.

12.
Small ; : e2307252, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054813

RESUMO

Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen-based societies. While non-precious-metal-based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel-vanadium oxide nanosheet arrays grown on porous nickel foam (Ni-V2 O3 /PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni-V2 O3 /PNF delivers 10 mA cm-2 at an overpotential of 54 mV for HER and a mass-specific kinetic current of 19.3 A g-1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron-deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non-precious-metal-based electrocatalysts through the IEF strategy.

13.
Mol Ecol ; 32(6): 1335-1350, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36073004

RESUMO

Understanding how and why species evolve requires knowledge on intraspecific divergence. In this study, we examined intraspecific divergence in the endangered hot-spring snake (Thermophis baileyi), an endemic species on the Qinghai-Tibet Plateau (QTP). Whole-genome resequencing of 58 sampled individuals from 15 populations was performed to identify the drivers of intraspecific divergence and explore the potential roles of genes under selection. Our analyses resolved three groups, with major intergroup admixture occurring in regions of group contact. Divergence probably occurred during the Pleistocene as a result of glacial climatic oscillations, Yadong-Gulu rift, and geothermal fields differentiation, while complex gene flow between group pairs reflected a unique intraspecific divergence pattern on the QTP. Intergroup fixed loci involved selected genes functionally related to divergence and local adaptation, especially adaptation to hot spring microenvironments in different geothermal fields. Analysis of structural variants, genetic diversity, inbreeding, and genetic load indicated that the hot-spring snake population has declined to a low level with decreased diversity, which is important for the conservation management of this endangered species. Our study demonstrated that the integration of demographic history, gene flow, genomic divergence genes, and other information is necessary to distinguish the evolutionary processes involved in speciation.


Assuntos
Variação Genética , Fontes Termais , Humanos , Animais , Tibet , Variação Genética/genética , Filogenia , Uganda , Serpentes/genética , Genômica
14.
Biomacromolecules ; 24(11): 5353-5363, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37871289

RESUMO

The silencing of disease-causing genes with small interfering RNA (siRNA) offers a particularly effective therapeutic strategy for different disorders; however, its clinical efficacy relies on the development of nontoxic and tissue-specific delivery vehicles. Herein, we report that bioresponsive chimaeric polymersomes (BCP) with short poly(ethylenimine) as inner shell mediate highly efficacious, sustained, and liver-specific siRNA transfection in vivo. BCP exhibited remarkable encapsulation efficiencies of siRNA (95-100%) at siRNA-feeding contents of 15-25 wt %, to afford stable, small-sized (55-64 nm), and neutral-charged BCP-siRNA. siApoB-Loaded BCP (BCP-siApoB) outperformed lipofectamine counterparts and silenced 93% of ApoB mRNA in HepG2 cells at 50 nM siApoB without inducing cytotoxicity. Intriguingly, the in vivo studies using wild-type C57BL/6 mice revealed that BCP-siApoB preferentially accumulated in the liver, and a single dose of 4.5 mg/kg achieved over 90% downregulation of ApoB mRNA for at least 10 days. The systemic administration of BCP-siApoB at 4.5 mg/kg every 2 weeks or 1.5 mg/kg weekly in diet-induced obese mice could also achieve up to 80% silencing of ApoB mRNA. The liver specificity and silencing efficacy of BCP-siApoB could further be improved by decorating it with the trivalent N-acetylgalactosamine (TriGalNAc) ligand. These bioresponsive and liver-specific chimaeric polymersomes provide an enabling technology for siRNA therapy of various liver-related diseases.


Assuntos
Apolipoproteínas B , Fígado , Animais , Camundongos , RNA Interferente Pequeno/genética , Camundongos Endogâmicos C57BL , Apolipoproteínas B/genética , Transfecção , RNA Mensageiro
15.
J Org Chem ; 88(7): 4325-4333, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36940141

RESUMO

Photocatalytic oxidation is a popular transformation way for organic synthesis and is widely applied in academia and industry. Herein, we report a blue light-induced alkylation-oxidation tandem reaction for the synthesis of diverse ketones by combining alkyl radical addition and oxidation of alkenyl borates. This reaction shows excellent functional group compatibility in acceptable yields, and diversity of radical precursors is applicable.

16.
Mol Cell ; 60(6): 914-29, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687600

RESUMO

Multicellular organisms have multiple homologs of the yeast ATG8 gene, but the differential roles of these homologs in autophagy during development remain largely unknown. Here we investigated structure/function relationships in the two C. elegans Atg8 homologs, LGG-1 and LGG-2. lgg-1 is essential for degradation of protein aggregates, while lgg-2 has cargo-specific and developmental-stage-specific roles in aggregate degradation. Crystallography revealed that the N-terminal tails of LGG-1 and LGG-2 adopt the closed and open form, respectively. LGG-1 and LGG-2 interact differentially with autophagy substrates and Atg proteins, many of which carry a LIR motif. LGG-1 and LGG-2 have structurally distinct substrate binding pockets that prefer different residues in the interacting LIR motif, thus influencing binding specificity. Lipidated LGG-1 and LGG-2 possess distinct membrane tethering and fusion activities, which may result from the N-terminal differences. Our study reveals the differential function of two ATG8 homologs in autophagy during C. elegans development.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas Associadas aos Microtúbulos/química , Animais , Família da Proteína 8 Relacionada à Autofagia , Sítios de Ligação , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografia por Raios X , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
Cell Mol Life Sci ; 79(9): 501, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36036324

RESUMO

BACKGROUND: Poly-GA, a dipeptide repeat protein unconventionally translated from GGGGCC (G4C2) repeat expansions in C9orf72, is abundant in C9orf72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9orf72-ALS/FTD). Although the poly-GA aggregates have been identified in C9orf72-ALS/FTD neurons, the effects on UPS (ubiquitin-proteasome system) and autophagy and their exact molecular mechanisms have not been fully elucidated. RESULTS: Herein, our in vivo experiments indicate that the mice expressing ploy-GA with 150 repeats instead of 30 repeats exhibit significant aggregates in cells. Mice expressing 150 repeats ploy-GA shows behavioral deficits and activates autophagy in the brain. In vitro findings suggest that the poly-GA aggregates influence proteasomal by directly binding proteasome subunit PSMD2. Subsequently, the poly-GA aggregates activate phosphorylation and ubiquitination of p62 to recruit autophagosomes. Ultimately, the poly-GA aggregates lead to compensatory activation of autophagy. In vivo studies further reveal that rapamycin (autophagy activator) treatment significantly improves the degenerative symptoms and alleviates neuronal injury in mice expressing 150 repeats poly-GA. Meanwhile, rapamycin administration to mice expressing 150 repeats poly-GA reduces neuroinflammation and aggregates in the brain. CONCLUSION: In summary, we elucidate the relationship between poly-GA in the proteasome and autophagy: when poly-GA forms complexes with the proteasome, it recruits autophagosomes and affects proteasome function. Our study provides support for further promoting the comprehension of the pathogenesis of C9orf72, which may bring a hint for the exploration of rapamycin for the treatment of ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Autofagia , Proteína C9orf72 , Camundongos , Complexo de Endopeptidases do Proteassoma , Sirolimo
18.
Pharm Dev Technol ; 28(8): 743-754, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37577952

RESUMO

Exploitation of advanced methotrexate (MTX) delivery with nanocomposites has important clinical application value. Poloxamer 188 micelle and layered double hydroxide loaded with MTX (LDH-MTX) by exfoliation reassembling were used to prepare LDH-MTX-poloxamer 188 nanocomposites with good dispersibility and efficient cellular uptake for controlled drug delivery. The LDH-MTX-poloxamer 188 nanocomposites with sphere-like morphology, of which the average hydrodynamic diameter was <100 nm, were shown to have better dispersion state than naked LDH-MTX. Importantly, the LDH-MTX-poloxamer 188 nanocomposites could achieve significant sustained drug release and have obvious pH dependent responsive release ability. In addition, these nanocomposites also exhibited long-term and excellent in vitro antitumor efficacy as opposed to pure MTX or LDH-MTX as evident from cell viability. More interestingly, compared to pure FITC used to simulate MTX, LDH nanocomposites labeled with FITC were considered to have better cell adhesion through cell uptake. Therefore, the studied nanocomposites of LDH-MTX-poloxamer 188 can be further used as a new advanced MTX delivery nanovehicles with desired properties in future therapeutic aspects.


Assuntos
Metotrexato , Nanocompostos , Metotrexato/farmacologia , Metotrexato/química , Poloxâmero , Fluoresceína-5-Isotiocianato , Hidróxidos/química , Nanocompostos/química
19.
Carcinogenesis ; 43(9): 874-884, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-35792800

RESUMO

High-mobility group nucleosome-binding domain 4 (HMGN4) exerts biological functions by regulating gene transcription through binding with nucleosome. As a new epigenetic regulator discovered in 2001, its biological functions have not been clarified. HMGN4 belongs to HMGNs family, in which HMGN1, 2 and 5 have been reported to play roles in oncogenesis of various cancers. However, it is reported that HMGN4 was associated with thyroid and liver cancer. In this study, we discovered for the first time that HMGN4 was highly expressed in human triple-negative breast cancer (TNBC), based on the analysis of the TCGA database. Moreover, we found that HMGN4 controlled the proliferation of human TNBC cells both in vitro and in vivo. Mechanistically, the positive correlation occurred between HMGN4 and STAT3 downstream genes while HMGN4 played an indispensable role in constitutively active STAT3 (STAT3C) induced colony formation. Interestingly, we reported that STAT3 regulated HMGN4 transcription as its transcriptional factor by chromatin immunoprecipitation and HMGN4 promoter-luc assays. That is to say, there is a feed-forward signaling circuit between HMGN4 and STAT3, which might control TNBC cell growth. Finally, we proved that the interference of HMGN4 by nanovehicle-packaged siRNA may be a potentially effective approach in TNBC treatment. In summary, our findings not only identified a novel regulator in TNBC cell proliferation but also revealed the mechanism by which HMGN4 acted as a downstream gene of STAT3 to participate in the STAT3 pathway, which indicated that HMGN4 was likely to be a potential novel target for anti-TNBC therapy.


Assuntos
Proteínas HMGN , Fator de Transcrição STAT3 , Neoplasias de Mama Triplo Negativas , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Nucleossomos , RNA Interferente Pequeno , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas HMGN/genética
20.
J Med Virol ; 94(2): 587-593, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-30942492

RESUMO

Brain dysfunction is a prerequisite for critical complications in children with hand, foot, and mouth disease (HFMD). Aquaporin 4 (AQP-4) may be involved in the pathological process of cerebral oedema and injury in children with severe and critical HFMD. This study aimed to assess the association of AQP-4 with the severity of enterovirus 71 (EV71)-associated HFMD. Children with EV71-infected HFMD were divided into a common group (clinical stage 1), a severe group (clinical stage 2), and a critical group (clinical stage 3) according to Chinese guidelines. The levels of AQP-4, interleukin-6 (IL-6), norepinephrine (NE), and neuron-specific enolase (NSE) before and after treatment were tested. Serum AQP-4, IL-6, NE, and NSE levels showed significant differences among the critical, severe, and common groups before and after treatment (P < 0.01). No significant differences in AQP-4 levels in cerebrospinal fluid (CSF) were observed between the critical and severe groups before and after treatment, but the CSF AQP-4 levels in these two groups were higher than those in the common group before treatment (P < 0.01). Serum AQP-4 levels, but not CSF AQP-4 levels, closely correlated with serum IL-6, NE, and NSE levels. These results suggest that the level of AQP-4 in serum, but not in CSF, is a candidate biomarker for evaluating the severity and prognosis of EV71-associated HFMD.


Assuntos
Aquaporina 4/sangue , Aquaporina 4/líquido cefalorraquidiano , Enterovirus Humano A/isolamento & purificação , Doença de Mão, Pé e Boca/virologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Pré-Escolar , Infecções por Enterovirus , Feminino , Doença de Mão, Pé e Boca/sangue , Doença de Mão, Pé e Boca/líquido cefalorraquidiano , Humanos , Lactente , Interleucina-6/sangue , Masculino , Norepinefrina/sangue , Fosfopiruvato Hidratase/sangue , Prognóstico , Curva ROC , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA