Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793147

RESUMO

The effect of sand and dust pollution on the sensitive structures of flow sensors in microelectromechanical systems (MEMS) is a hot issue in current MEMS reliability research. However, previous studies on sand and dust contamination have only searched for sensor accuracy degradation due to heat conduction in sand and dust cover and have yet to search for other failure-inducing factors. This paper aims to discover the other inducing factors for the accuracy failure of MEMS flow sensors under sand and dust pollution by using a combined model simulation and sample test method. The accuracy of a flow sensor is mainly reflected by the size of its thermistor, so in this study, the output value of the thermistor value was chosen as an electrical characterization parameter to verify the change in the sensor's accuracy side by side. The results show that after excluding the influence of heat conduction, when sand particles fall on the device, the mutual friction between the sand particles will produce an electrostatic current; through the principle of electrostatic dissipation into the thermistor, the principle of measurement leads to the resistance value becoming smaller, and when the sand dust is stationary for some time, the resistance value returns to the expected level. This finding provides theoretical guidance for finding failure-inducing factors in MEMS failure modes.

2.
Micromachines (Basel) ; 13(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35208399

RESUMO

Implantable medical devices have been facing the severe challenge of wireless communication for a long time. Acoustically actuated magnetoelectric (ME) transducer antennas have attracted lots of attention due to their miniaturization, high radiation efficiency and easy integration. Here, we fully demonstrate the possibility of using only one bulk acoustic wave (BAW) actuated ME transducer antenna (BAW ME antenna) for communication by describing the correspondence between the BAW ME antenna and components of the traditional transmitter in detail. Specifically, we first demonstrate that the signal could be modulated by applying a direct current (DC) magnetic bias and exciting different resonance modes of the BAW ME antenna with frequencies ranging from medium frequency (MF) (1.5 MHz) to medium frequency (UHF) (2 GHz). Then, two methods of adjusting the radiation power of the BAW ME antenna are proposed to realize signal amplification, including increasing the input voltage and using higher order resonance. Finally, a method based on electromagnetic (EM) perturbation is presented to simulate the transmission process of the BAW ME antenna via the finite element analysis (FEA) model. The simulation results match the radiation pattern of magnetic dipoles perfectly, which verifies both the model and our purpose.

3.
Micromachines (Basel) ; 13(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35208330

RESUMO

Magnetic sensors actuated by bulk acoustic wave (BAW) have attracted extensive attention due to the fact of their high sensitivity, GHz-level high frequency, and small size. Different from previous studies, suppression of energy loss and improvement in energy conversion efficiency of the BAW magnetoelectric (ME) sensor were systematically considered during the device design in this work. Finite element analysis models of material (magnetic composite), structure (ME heterostructure), and device (BAW ME magnetic sensor) were established and analyzed in COMSOL software. Additionally, the magnetic composite was prepared by radio frequency magnetron sputtering, and its soft magnetism was characterized by magnetic hysteresis loop and surface roughness. The research results demonstrate that after inserting four layers of 5 nm Al2O3 films, a performance of 86.7% eddy current loss suppression rate, a less than 1.1% magnetostriction degradation rate, and better soft magnetism were achieved in 600 nm FeGaB. Furthermore, compared with other structures, the two-layer piezomagnetic/piezoelectric heterostructure had a better ME coupling performance. Eventually, the design of the BAW ME magnetic sensor was optimized by the resonance-enhanced ME coupling to match the resonance frequency between the magnetic composite and the BAW resonator. When a 54,500 A/m direct current bias magnetic field was applied, the sensor worked at the first-order resonance frequency and showed good performance. Its linearity was better than 1.30%, the sensitivity was as high as 2.33 µmV/A, and the measurement range covered 0-5000 A/m.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA