RESUMO
The tumor microenvironment and cancer-associated fibroblasts (CAFs) play crucial roles in tumor development, and their metabolic coupling remains unclear. Clinical data showed a positive correlation between PDGF-BB, CAFs, and glycolysis in the tumor microenvironment of oral tongue squamous cell carcinoma patients. In vitro, CAFs are derived from hOMF cells treated with PDGF-BB, which induces their formation and promotes aerobic glycolysis. Mitophagy increased the PDGF-BB-induced formation of CAF phenotypes and aerobic glycolysis, while autophagy inhibition blocked PDGF-BB-induced effects. Downregulation of miR-26a-5p was observed in CAFs; upregulation of miR-26a-5p inhibited the expression of mitophagy-related proteins ULKI, Parkin, PINK1, and LC3 and aerobic glycolysis in PDGF-BB-induced CAFs. PDGF-BB-induced CAFs promoted tumor cell proliferation, invasion, metastasis, NF-κB signaling pathway activation, and PDGF-BB secretion. Thus, PDGF-BB is associated with lactate-induced CAF formation and glucose metabolism reprogramming. These findings indicate potential therapeutic targets in oral tongue squamous cell carcinoma.
RESUMO
BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease characterized by the progressive degeneration of articular cartilage, leading to pain, stiffness, and loss of joint function. The pathogenesis of OA involves multiple factors, including increased intracellular reactive oxygen species (ROS), enhanced chondrocyte apoptosis, and disturbances in cartilage matrix metabolism. These processes contribute to the breakdown of the extracellular matrix (ECM) and the loss of cartilage integrity, ultimately resulting in joint damage and dysfunction. RNA interference (RNAi) therapy has emerged as a promising approach for the treatment of various diseases, including hATTR and acute hepatic porphyria. By harnessing the natural cellular machinery for gene silencing, RNAi allows for the specific inhibition of target genes involved in disease pathogenesis. In the context of OA, targeting key molecules such as matrix metalloproteinase-13 (MMP13), which plays a critical role in cartilage degradation, holds great therapeutic potential. RESULTS: In this study, we developed an innovative therapeutic approach for OA using a combination of liposome-encapsulated siMMP13 and NG-Monomethyl-L-arginine Acetate (L-NMMA) to form an injectable hydrogel. The hydrogel served as a delivery vehicle for the siMMP13, allowing for sustained release and targeted delivery to the affected joint. Experiments conducted on destabilization of the medial meniscus (DMM) model mice demonstrated the therapeutic efficacy of this composite hydrogel. Treatment with the hydrogel significantly inhibited the degradation of cartilage matrix, as evidenced by histological analysis showing preserved cartilage structure and reduced loss of proteoglycans. Moreover, the hydrogel effectively suppressed intracellular ROS accumulation in chondrocytes, indicating its anti-oxidative properties. Furthermore, it attenuated chondrocyte apoptosis, as demonstrated by decreased levels of apoptotic markers. CONCLUSION: In summary, the injectable hydrogel containing siMMP13, endowed with anti-ROS and anti-apoptotic properties, may represent an effective therapeutic strategy for osteoarthritis in the future.
Assuntos
Apoptose , Condrócitos , Hidrogéis , Metaloproteinase 13 da Matriz , Osteoartrite , Espécies Reativas de Oxigênio , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Hidrogéis/química , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Lipossomos/química , HumanosRESUMO
With increased diabetes incidence, diabetic wound healing is one of the most common diabetes complications and is characterized by easy infection, chronic inflammation, and reduced vascularization. To address these issues, biomaterials with multifunctional antibacterial, immunomodulatory, and angiogenic properties must be developed to improve overall diabetic wound healing for patients. In our study, we prepared porous poly (L-lactic acid) (PLA) nanofiber membranes using electrospinning and solvent evaporation methods. Then, sulfated chitosan (SCS) combined with polydopamine-gentamicin (PDA-GS) was stepwise modified onto porous PLA nanofiber membrane surfaces. Controlled GS release was facilitated via dopamine self-polymerization to prevent early stage infection. PDA was also applied to PLA nanofiber membranes to suppress inflammation. In vitro cell tests results showed that PLA/SCS/PDA-GS nanofiber membranes immuomodulated macrophage toward the M2 phenotype and increased endogenous vascular endothelial growth factor secretion to induce vascularization. Moreover, SCS-contained PLA nanofiber membranes also showed good potential in enhancing macrophage trans-differentiation to fibroblasts, thereby improving wound healing processes. Furthermore, our in vitro antibacterial studies against Staphylococcus aureus indicated the effective antibacterial properties of the PLA/SCS/PDA-GS nanofiber membranes. In summary, our novel porous PLA/SCS/PDA-GS nanofiber membranes possessing enhanced antibacterial, anti-inflammatory, and angiogenic properties demonstrate promising potential in diabetic wound healing processes.
Assuntos
Quitosana , Diabetes Mellitus , Nanofibras , Humanos , Porosidade , Fator A de Crescimento do Endotélio Vascular , Poliésteres/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cicatrização , Anti-Inflamatórios , Ácido LácticoRESUMO
OBJECTIVE: Idiopathic gingival fibromatosis (IGF) is a rare heterogeneous disease that results in the progressive and diffuse hyperplasia of gingival tissues. MicroRNAs are implicated in the development and progression of various tumors. The present study aimed to explore the potential roles and mechanisms of miR-148a-3p in IGF. METHODS: Gingival fibroblasts (GFs) were transfected with miR-148a-3p mimics, miR-148a-3p inhibitors, or siNPTX1, and then, the proliferation and apoptosis of GFs and the expression of related genes were evaluated using Cell Counting Kit-8 assays, 5-ethynyl-2'-deoxyuridine assays, flow cytometry, reverse transcription-quantitative polymerase chain reaction, and western blot analysis, respectively. RESULTS: miR-148a-3p was highly expressed in GFs of IGF (IGF-GFs) as compared with normal GFs (N-GFs). Overexpression of miR-148a-3p promoted the proliferation and inhibited the apoptosis of N-GFs, whereas downregulation of miR-148a-3p had the opposite effect in IGF-GFs. Knockdown of NPTX1 reversed miR-148a-3p-mediated effects in IGF-GFs. Dual-luciferase reporter assay confirmed that NPTX1 is a direct target of miR-148a-3p. CONCLUSION: These findings identify that miR-148a-3p could regulate cell proliferation and apoptosis by targeting NPTX1, providing new insights for the further study of the molecular mechanism and treatment of IGF.
RESUMO
OBJECTIVES: Accumulating evidence suggests that activated fibroblasts are the key cells in the T-cell response to tumor immunosuppression. We attempted to investigate the effect of activated fibroblasts on PD-L1 expression and the related immune escape mechanism in tongue squamous cell carcinoma. METHODS: Western blotting, qPCR, and other techniques were used to study the expression of PD-L1 in tongue squamous cell carcinoma cells and the nude mouse model of transplanted tumors in vivo; clinical tissue samples were verified. In addition, we established a direct coculture model of T cells and tongue squamous cell carcinoma cells explore the mechanisms of immune escape. RESULTS: We found that PDGF-BB induces fibroblast activation by facilitating the oversecretion of chemokine CCL25. Further analysis showed that CCL25 derived from activated fibroblasts activated the Akt signaling pathway to promote PD-L1 expression. The activated fibroblasts inhibited T-cell IFN-γ secretion through the CCL25/Akt/PD-L1 pathway, which indirectly inhibited T-cell proliferation. CONCLUSION: Activated fibroblasts can induce the high expression of PD-L1 in the oral and tongue squamous cell carcinoma cell line Cal-27 via the CCL25/CCR9/p-Akt axis, to significantly inhibit the proliferation and IFN-γ secretion of T cells and promote the immune escape of tongue squamous cell carcinoma cells.
RESUMO
With the development of magnetic refrigerant technology, magnetic substances with a large magnetocaloric effect (MCE) and nearly zero thermal hysteresis are desired. Although Ni-Mn based Heusler alloys have been found to produce large MCEs and have attracted increasing attention recently, the occurrence of thermal hysteresis accompanying MCE due to the nature of first-order phase transition limits its applications with magnetic refrigeration. Up to now, an effective theory or method to eliminate this thermal hysteresis is still lacking. Here, we propose to utilize the feature of magnetic transition at the morphotropic phase boundary (MPB) to eliminate thermal hysteresis and thus design a MPB-involved phase diagram in Heusler alloys of Ni50Mn36Sb14-xInx (x = 0-14). As theoretically expected, the magnetic transition at MPB really yields a MCE with a negligible thermal hysteresis (â¼0 K) and the refrigerant capacity arrives at a maximum value of 108.2 J kg-1 at the composition of x = 9. Our findings provide an effective way to design large MCE materials with zero thermal hysteresis.
RESUMO
A plasmonic, refractive, index nanosensor is investigated theoretically and numerically in two U-shaped cavities side-coupled to a metalâ»dielectricâ»metal (MDM) waveguide. A transparency window between two transmission dips is observed. The physical origin of the transmission phenomenon is revealed by mapping the magnetic field distribution. Independent double resonances are realized through the proposed design. Double resonances showed diverse responses to the variations of the structural dimensions. In particular, they presented different dependences on a refraction index of the medium in an individual resonator. One resonance exhibited a remarkable shift with the increase of the refraction index; however, the other resonance remained unchanged. On the basis of this unique characteristic of differing sensitivities, self-reference sensing is discussed. The nanosensor yielded a high sensitivity of 917 nm/RIU and a figure of merit of 180 RIU−1. This work is helpful in terms of the design of on-chip optical sensors with high sensitivity and improved detection accuracy in complicated environments.
RESUMO
An ultracompact plasmonic refractive index sensor based on Fano resonance is proposed. The sensor comprises a metal-insulator-metal waveguide with a stub and a side-coupled split-ring resonator. The effect of structural parameters on Fano resonance and the refractive index sensitivity of the system are analyzed in detail by investigating the transmission spectrum. Simulation results show that Fano resonance has different dependences on the parameters of the sensor structure. The reason is further discussed based on the field pattern. The peak wavelength and lineshape can be easily tuned by changing the key parameters. Furthermore, dual Fano resonance effects with different frequency intervals are obtained, which are mainly induced by the symmetry breaking of the structure. The proposed sensor yields sensitivity higher than 1.4×103 nm/RIU and a figure of merit of 1.2×105. The sensitivity and figure of merit can be further improved by optimizing the geometry parameters.
RESUMO
This study constructed a robust theoretical model aimed at elucidating the determinants that shape college EFL teachers' research intentions by integrating the tenets of Self-Determination Theory (SDT) with Theory of Planned Behavior (TPB). This model was empirically validated using data from 271 EFL teachers from eight colleges in China, selected through stratified sampling and collected via paper questionnaires, then analyzed using structural equation modeling. The findings underscore the instrumental roles of both autonomous and controlled motivations in driving research-related behaviors, thereby reinforcing the foundational concepts of SDT. Additionally, this study provides intricate insights into the mechanisms wherein motivation steers immediate determinants of research intention, encompassing attitudes, subjective norms, and perceived behavioral control. This melding of SDT and TPB offers an all-encompassing perspective on the multifaceted nexus between motivation and research intentions. Consequently, this refined model not only marks a pivotal stride in advancing teacher education theory but also establishes a guiding framework for forthcoming research and interventions, accentuating the imperative of fostering research intentions among college EFL educators.
Assuntos
Intenção , Motivação , Autonomia Pessoal , Humanos , Masculino , Feminino , Universidades , Adulto , China , Inquéritos e Questionários , Teoria Psicológica , Docentes/psicologia , Pesquisa , Pessoa de Meia-Idade , Modelos Teóricos , Teoria do Comportamento PlanejadoRESUMO
Background: In recent years, there have been frequent reports of human infection with H5N6 avian influenza. However, the fundamental characteristics of the disease remain unclear. This paper conducts a systematic review to explore the epidemiological features of the disease, aiming to provide a foundation for epidemic prevention and control and to serve as a reference for clinical diagnosis. Method: A systematic search was performed in PubMed, Web of Science, CNKI, Wanfang and gray literature up to November 15, 2023. All articles were about the epidemic features of the H5N6 subtype of avian influenza, written in English or Chinese. Results: This review encompasses 24 documented outbreaks of human H5N6 avian influenza, exclusively reported in southern China. The age range of cases spanned from under 2 years old to 81 years old. The incubation period ranged from 1 to 13 days, with a mean of 4.3 days. Among the 24 cases, 22 individuals had a documented history of contact with poultry. Of the 23 cases with available prognosis data, 12 resulted in fatalities, yielding a significant fatality rate of 52.2%. A noteworthy observation is that all cases with a history of contact with sick and dead poultry resulted in fatalities, and the difference in fatality rates between this group and others was statistically significant (χ2 = 7.441, p = 0.014). This study identified a total of 888 close contacts, none of whom demonstrated infection. Conclusion: This study represents a comprehensive summary of the epidemiological characteristics of human H5N6 avian influenza. Significantly, it sheds light on the incubation period of the disease and underscores a potential elevated risk of mortality among patients with a history of contact with sick and dead poultry.
Assuntos
Surtos de Doenças , Influenza Aviária , Influenza Humana , Aves Domésticas , Humanos , Influenza Humana/epidemiologia , Animais , Influenza Aviária/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Surtos de Doenças/veterinária , China/epidemiologia , Pessoa de Meia-Idade , Idoso , Adulto , Vírus da Influenza A , Pré-Escolar , Idoso de 80 Anos ou mais , Criança , Adolescente , Masculino , Feminino , Lactente , Adulto JovemRESUMO
BACKGROUND: Yunnan Baiyao (YNBY), a traditional Chinese medicine, is renowned for its anti-inflammatory properties. Recent studies have suggested that YNBY plays a significant role in inhibiting osteoclast differentiation and autophagy, which are essential processes in inflammation and bone resorption associated with periodontitis. However, the precise relationship between autophagy and the mechanism by which YNBY inhibits osteoclastogenesis remains unexplored.The primary objective of this study was to investigate the inhibitory effects of YNBY on the process of osteoclastogenesis and its potential in preventing inflammatory bone loss. METHODS: The animals were subjected to sacrifice at intervals of 2, 4, and 6 weeks postintervention whilst under deep anaesthesia, and specimens were subsequently collected. The specimens were subjected to hematoxylin and eosin (HE) staining, in addition to tartrate-resistant acid phosphatase (TRAP) staining and subsequently imaged employing a digital scanner. The confirmation of osteoclast (OC) differentiation and autophagic flux was achieved through various techniques, including western blotting, transmission electron microscopy (TEM), TRAP staining, pit formation assay, and immunofluorescence. RESULTS: The microcomputed tomography images provided evidence of the effective inhibition of alveolar bone absorption at 2, 4, and 6 weeks following YNBY treatment. Additionally, the histomorphometric evaluations of tissue segments stained with HE and TRAP, which involved measuring the distance between the alveolar bone crest (ABC) and cementoenamel junction (CEJ) and quantifying TRAP-positive OCs, yielded comparable results to those obtained through computed tomography analysis. YNBY treatment resulted in a decrease in the CEJ-ABC distance and inhibition of OC differentiation. Furthermore, in vitro studies showed that the autophagy modulators rapamycin (RAP) and 3-methyladenine (3-MA) significantly affected OC differentiation and function. YNBY attenuated the impact of RAP on the differentiation of OCs, autophagy-related factor activation, and bone resorption. CONCLUSIONS: We hypothesise that YNBY suppresses the differentiation of OC and bone resorption by blocking autophagy. This study reveals that targeting autophagy might be a new alternative treatment methodology for periodontitis treatment.
Assuntos
Reabsorção Óssea , Medicamentos de Ervas Chinesas , Periodontite , Animais , Humanos , Osteoclastos , Microtomografia por Raio-X , China , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Autofagia , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Sirolimo/farmacologiaRESUMO
Background and Objective: Periodontitis is an inflammatory disease that eventually destroys tooth-supporting tissue. Yunnan Baiyao (YNBY), a traditional Chinese medicine compound with haemostatic and anti-inflammatory properties has shown therapeutic potential in several diseases. Our previous study revealed that YNBY suppressed osteoclast differentiation in periodontitis. The purpose of this study is to investigate the influences of YNBY on osteoblasts and explore its potential mechanisms. Materials and Methods: A rat periodontitis model was established by ligation of maxillary second molars. After the end of modelling, histopathological observation by hematoxylin-eosin (HE) staining and Masson trichrome staining, detection of bone resorption by Micro-CT scanning, detection of osteoclasts by tartrate-resistant acid phosphatase (TRAP) staining, expression of osteocalcin (OCN) and microtubule-associated protein 1 light chain 3 (LC3) by immunohistochemistry. Lipopolysaccharides was used to irritate MC3T3-E1 osteoblastic cells and ex vivo calvarial organ as an in vitro model of inflammation. CCK-8 assay was performed to examine the toxicity of YNBY to MC3T3-E1 osteoblastic cells. Osteogenesis was assessed with alizarin red staining, immunofluorescence staining, Western blot and immunohistochemical staining. Transmission electron microscopy, fluorescent double staining, Western blot and immunohistochemical staining were employed to detect autophagy. Results: Histological and micro-CT analyses revealed that YNBY gavage reduced bone loss caused by experimental periodontitis and upregulated osteogenic proteins in vivo. YNBY attenuated the production of autophagy-related proteins in periodontitis rats. Additionally, YNBY promoted osteogenesis by inhibiting inflammation-induced autophagy in vitro. Furthermore, YNBY suppressed LPS-mediated bone resorption and promoted the production of osteoblast-related proteins in inflamed calvarial tissues ex vivo. Conclusion: This study demonstrated, through in vivo, in vitro and ex vivo experiments, that YNBY promoted osteoblast differentiation by suppressing autophagy, which markedly alleviated bone destruction caused by periodontitis.
RESUMO
Oral squamous cell carcinoma (OSCC) is a crucial public health problem, accounting for approximately 2% of all cancers globally and 90% of oral malignancies over the world. Unfortunately, despite the achievements in surgery, radiotherapy, and chemotherapy techniques over the past decades, OSCC patients still low 5-year survival rate. Cisplatin, a platinum-containing drug, serves as one of the first-line chemotherapeutic agents of OSCC. However, the resistance to cisplatin significantly limits the clinical practice and is a crucial factor in tumor recurrence and metastasis after conventional treatments. Ferroptosis is an iron-based form of cell death, which is initiated by the intracellular accumulation of lipid peroxidation and reactive oxygen species (ROS). Interestingly, cisplatin-resistant OSCC cells exhibit lower level of ROS and lipid peroxidation compared to sensitive cells. The reduced ferroptosis in cisplatin resistance cells indicates the potential relationship between cisplatin resistance and ferroptosis, which is proved by recent studies showing that in colorectal cancer cells. However, the modulation pathway of ferroptosis reversing cisplatin resistance in OSCC cells still remains unclear. This article aims to concisely summarize the molecular mechanisms and evaluate the relationship between ferroptosis and cisplatin resistance OSCC cells, thereby providing novel strategies for overcoming cisplatin resistance and developing new therapeutic approaches.
RESUMO
Background: Quercetin (QU) plays an important role in treating periodontitis; however, the mechanism through which microRNAs regulate Th17 cell differentiation has not been determined. Methods: QU was administered intragastrically to periodontitis rats once a day for one month. The morphology of alveolar bone was observed by micro-CT, gingival tissue structure was observed by HE staining, IL-6, TNF-α, IL-17A, RORγt, FOXP3 and IL-10 were detected by immunohistochemical staining, and Th17 and Treg cells in the peripheral blood were detected by flow cytometry. CD4+T cells were induced to differentiate into Th17 cells in vitro. Cell viability was determined by CCK8, and IL-17A and RORγt were detected by qPCR. Th17 cells were detected by flow cytometry, microRNA sequencing and bioinformatics analysis were used to screen key microRNAs, the phenotypic changes of Th17 cells were observed after overexpressed microRNAs via mimics. TargetScan database, in situ hybridization, and dual-luciferase reporter experiment were used to predict and prove target genes of microRNAs. The phenotype of Th17 cells was observed after overexpression of microRNA and target gene. Results: Compared with periodontitis group, the distance from cementoenamel junction(CEJ) to alveolar bone(AB) was decreased, the structure of gingival papilla was improved, IL-6, TNF-α, IL-17, and RORγt were downregulated, FOXP3 and IL-10 were upregulated, the proportion of Th17 decreased and Treg increased in peripheral blood after QU treatment. Compared with Th17 cell group, mRNA levels of IL-17A and RORγt were decreased, and proportion of Th17 cells was significantly lower in the coculture group. MiR-147-5p was low in control group, upregulated in Th17 cell group, and downregulated after QU intervention, it's eight bases were inversely related to 3'UTR of Clip3, miR-147-5p with Clip3 were co-located in cells of periodontal tissue. Compared with those in Th17-mimicsNC + QU cells, the mRNA levels of RORγt and IL-17A upregulated, and proportion of Th17 cells increased in Th17-miR-147-5p + QU cells. The miR-147-5p mimics inhibited the luciferase activity of the WT Clip3 3'UTR but had no effect on the Mut Clip3 3'UTR. Clip3 was significantly downregulated after the overexpression of miR-147-5p. Mimics transfected with miR-147-5p reversed the decrease in the proportion of Th17 cells induced by QU, while the overexpression of Clip3 antagonized the effect of miR-147-5p and further reduced the proportion of Th17 cells. Moreover, the overexpression of miR-147-5p reversed the decreases in the mRNA levels of IL-17 and RORγt induced by QU treatment, while pcDNA3.1 Clip3 treatment further decreased the mRNA levels of IL-17 and RORγt. Conclusion: QU reducing inflammatory response and promoting alveolar bone injury and repair, which closely relative to inhibit the differentiation of CD4+T cells into Th17 cells by downregulating miR-147-5p to promote the activation of Clip3.
RESUMO
Advanced organic electronic technologies have put forward a pressing demand for cost-effective and high-throughput fabrication of organic single-crystal films (OSCFs). However, solution-printed OSCFs are typically plagued by the existence of abundant structural defects, which pose a formidable challenge to achieving large-scale and high-performance organic electronics. Here, it is elucidated that these structural defects are mainly originated from printing flow-induced anisotropic growth, an important factor that is overlooked for too long. In light of this, a surfactant-additive printing method is proposed to effectively overcome the anisotropic growth, enabling the deposition of uniform OSCFs over the wafer scale at a high speed of 1.2 mm s-1 at room temperature. The resulting OSCF exhibits appealing performance with a high average mobility up to 10.7 cm2 V-1 s-1, which is one of the highest values for flexible organic field-effect transistor arrays. Moreover, large-scale OSCF-based flexible logic circuits, which can be bent without degradation to a radius as small as 4.0 mm and over 1000 cycles are realized. The work provides profound insights into breaking the limitation of flow-induced anisotropic growth and opens new avenues for printing large-scale organic single-crystal electronics.
RESUMO
Human vision excels in perceiving nighttime low illumination due to biological feedforward adaptation. Replicating this ability in biomimetic vision using solid-state devices has been highly sought after. However, emulating scotopic adaptation, entailing a confluence of efficient photoexcitation and dynamic carrier modulation, presents formidable challenges. Here, we demonstrate a low-power and bionic scotopic adaptation transistor by coupling a light-absorption layer and an electron-trapping layer at the bottom of the semiconducting channel, enabling simultaneous achievement of efficient generation of free photocarriers and adaptive carrier accumulation within a single device. This innovation empowers our transistor to exhibit sensitivity-potentiated characteristics after adaptation, detecting scotopic-level illumination (0.001 lx) with exceptional photosensitivity up to 103 at low voltages below 2 V. Moreover, we have successfully replicated diverse scotopic vision functions, encompassing time-dependent visual threshold enhancement, light intensity-dependent adaptation index, imaging contrast enhancement for nighttime low illumination imaging, opening an opportunity for artificial night vision.
RESUMO
Introduction: Hepatitis E (HE), caused by the Hepatitis E virus (HEV), is a significant cause of acute viral hepatitis globally and a major public health concern, particularly in specific high-prevalence areas in China, which have diverse transmission routes and regional differences. Identifying the primary risk factors for HE transmission is essential to develop targeted interventions for vulnerable populations. Methods: This study employed a 1:1 matched case-control methodology, using a standardized questionnaire complemented by medical records for data validation. Results: Among the 442 HE cases and 428 healthy controls, the case group had a higher prevalence of fatigue (46.21%) and loss of appetite (43.84%) compared to the control group. Furthermore, liver function indicators were significantly higher in the case group, with an average alanine aminotransferase (ALT) level of 621.94 U/L and aspartate aminotransferase (AST) level of 411.53 U/L. Severe HE patients were predominantly male, with significantly increased ALT and AST levels reaching 1443.81 U/L and 862.31 U/L respectively, along with a higher incidence of fatigue (90%) and loss of appetite (75%). Multifactorial analysis indicated that frequent dining out (OR = 2.553, 95%CI:1.686-3.868), poor hygiene conditions (OR = 3.889, 95%CI:1.399-10.807), and comorbid chronic illnesses (OR = 2.275, 95%CI:1.616-3.202) were risk factors for HE infection; conversely, good hygiene practices were protective factors against HE infection (OR = 0.698, 95%CI:0.521-0.934). Conclusion: In conclusion, HE infection in Zhejiang Province is closely associated with dietary habits and environmental hygiene, and individuals with chronic diseases or co-infections are at increased risk. This highlights the need for targeted health education to reduce the incidence of HE among these populations.
Assuntos
Hepatite E , Humanos , Masculino , China/epidemiologia , Estudos de Casos e Controles , Fatores de Risco , Hepatite E/epidemiologia , Pessoa de Meia-Idade , Feminino , Adulto , Prevalência , Inquéritos e Questionários , Vírus da Hepatite E , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangueRESUMO
Hepatitis E infection is typically caused by contaminated water or food. In July and August 2022, an outbreak of hepatitis E was reported in a nursing home in Zhejiang Province, China. Local authorities and workers took immediate actions to confirm the outbreak, investigated the sources of infection and routes of transmission, took measures to terminate the outbreak, and summarized the lessons learned. An epidemiological investigation was conducted on all individuals in the nursing home, including demographic information, clinical symptoms, history of dietary, water intake and contact. Stool and blood samples were collected from these populations for laboratory examinations. The hygiene environment of the nursing home was also investigated. A case-control study was conducted to identify the risk factors for this outbreak. Of the 722 subjects in the nursing home, 77 were diagnosed with hepatitis E, for an attack rate of 10.66 %. Among them, 18 (23.38 %, 18/77) individuals had symptoms such as jaundice, fever, and loss of appetite and were defined as the population with hepatitis E. The average age of people infected with hepatitis E virus (HEV) was 59.96 years and the attack rate of hepatitis E among women (12.02 %, 59/491) was greater than that among men (7.79 %, 18/231). The rate was the highest among caregivers (22.22 %, 32/144) and lowest among logistics personnel (6.25 %, 2/32); however, these differences were not statistically significant (P > 0.05). Laboratory sequencing results indicated that the genotype of this hepatitis E outbreak was 4d. A case-control study showed that consuming pig liver (odds ratio (OR) = 7.50; 95 % confidence interval [CI]: 3.84-16.14, P < 0.001) and consuming raw fruits and vegetables (OR = 5.92; 95 % CI: 1.74-37.13, P = 0.017) were risk factors for this outbreak of Hepatitis E. Moreover, a monitoring video showed that the canteen personnel did not separate raw and cooked foods, and pig livers were cooked for only 2 min and 10 s. Approximately 1 month after the outbreak, an emergency vaccination for HEV was administered. No new cases were reported after two long incubation periods (approximately 4 months). The outbreak of HEV genotype 4d was likely caused by consuming undercooked pig liver, resulting in an attack rate of 10.66 %. This was related to the rapid stir-frying cooking method and the hygiene habit of not separating raw and cooked foods.
Assuntos
Culinária , Hepatite E , Casas de Saúde , Carne de Porco , Vírus da Hepatite E/classificação , Vírus da Hepatite E/genética , Hepatite E/epidemiologia , Hepatite E/transmissão , Hepatite E/virologia , Genótipo , China/epidemiologia , Carne de Porco/virologia , Fígado/virologia , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Fatores de Risco , FilogeniaRESUMO
Narrow-band-gap Sn-Pb perovskites have emerged as one of the most promising solution-processed near-infrared (NIR) light-detection technologies, with the key figure-of-merit parameters already rivaling those of commercial inorganic devices, but maximizing the cost advantage of solution-processed optoelectronic devices depends on the ability to fast-speed production. However, weak surface wettability to perovskite inks and evaporation-induced dewetting dynamics have limited the solution printing of uniform and compact perovskite films at a high speed. Here, we report a universal and effective methodology for fast printing of high-quality Sn-Pb mixed perovskite films at an unprecedented speed of 90 m h-1 by altering the wetting and dewetting dynamics of perovskite inks with the underlying substrate. A line-structured SU-8 pattern surface to trigger spontaneous ink spreading and fight ink shrinkage is designed to achieve complete wetting with a near-zero contact angle and a uniform dragged-out liquid film. The high-speed printed Sn-Pb perovskite films have both large perovskite grains (>100 µm) and excellent optoelectronic properties, yielding highly efficient self-driven NIR photodetectors with a large voltage responsivity over 4 orders of magnitude. Finally, the potential application of the self-driven NIR photodetector in health monitoring is demonstrated. The fast printing methodology provides a new possibility to extend the manufacturing of perovskite optoelectronic devices to industrial production lines.
RESUMO
Demineralized dentin matrix (DDM) is an osteoconductive and osteoinductive material that has been successfully used in sinus floor augmentation and alveolar ridge augmentation in clinical applications. It releases bone morphogenetic proteins (BMPs) and other growth factors, making DDM a suitable grafting material. However, the granular particle of DDM makes it difficult to anchor into the bone defect area. The aim of this study was to investigate the biological effects and osteoinductivity of the combination of DDM and Fibrin Glue (FG) at an optimal ratio on bone healing from a critical bone defect in an animal model. The mouse osteoblastic cell line (MC3T3-E1) was co-cultured with various ratios of DDM and FG to examine their effects on osteoblast proliferation and differentiation, as indicated by alkaline phosphatase (ALP) activity, osteocalcin (OC) production and mineralized nodules formation. The optimal ratio was then chosen for further study with a rabbit calvarial defective model, in which they were implanted with DDM or DDM-FG1 (1 g: 0.1 ml) and DDM-FG2 (1 g: 0.5 ml) compounds, or left blank for 2, 4, 8 and 12 weeks to investigate soft tissue and new bone regeneration. Micro-CT and histology analysis were used to evaluate the total grafting properties according to the different healing periods. The result from in vitro studies demonstrated that the ratio of 1:0.1 induced more ALP activity and mineralized nodules, while the ratio of 1: 0.5 (DDM-FG combined) induced more osteocalcin (OC) at specific time points. In the animal model, the 3D new bone volume in all DDM-FG treatment groups was significantly greater than that in the blank group at 2, 4, 8 and 12 weeks. Furthermore, the new bone volume was greater in DDM-FG2 when compared to the other groups during the early weeks of the healing period. In histological analysis, clusters of osteoblasts were formed adjacent to the DDM particles, and newly formed bone was observed in all groups, suggesting an osteoinductive property of DDM. Moreover, the greater new collagen synthesis observed at 4 weeks suggested that early bone healing was induced in the DDM-FG2 group. This study demonstrated that at an optimal ratio, the DDM-FG compound enhances osteogenic activities and bone regeneration.