Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 204: 107218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768671

RESUMO

This study investigates the role of Stanniocalcin-1 (STC1) in melanoma progression, with a focus on its impact on metastasis, angiogenesis, and immune evasion. Systematic bioinformatics analysis revealed the potential influence of STC1 dysregulation on prognosis, immune cell infiltration, response to immune therapy, and cellular functions. In vitro assays were conducted to assess the proliferation, invasion, migration, and angiogenesis capabilities of A375 cells. In vivo experiments utilizing C57BL/6 J mice established a lung metastasis model using B16-F10 cells to evaluate macrophage infiltration and M2 polarization. A Transwell co-culture system was employed to explore the crosstalk between melanoma and macrophages. Molecular interactions among STC1, YAP, ßPIX, and CCL2 are investigated using mass spectrometry, Co-Immunoprecipitation, Dual-Luciferase Reporter Assay, and Chromatin Immunoprecipitation experiments. STC1 was found to enhance lung metastasis by promoting the recruitment and polarization of M2 macrophages, thereby fostering an immunosuppressive microenvironment. Mechanistically, STC1 competes with YAP for binding to ßPIX within the KER domain in melanoma cells, leading to YAP activation and subsequent CCL2 upregulation. CCL2-induced M2 macrophages secrete VEGFA, which enhances tumor vascularization and increases STC1 expression via the AKT signaling pathway in melanoma cells, establishing a pro-metastatic feedback loop. Notably, STC1-induced YAP activation increases PD-L1 expression, promoting immune evasion. Silencing STC1 enhances the efficacy of PD-1 immune checkpoint therapy in mice. This research elucidates STC1's role in melanoma metastasis and its complex interactions with tumor-associated macrophages, proposing STC1 as a potential therapeutic target for countering melanoma metastasis and augmenting the efficacy of PD-1 immunotherapy.


Assuntos
Quimiocina CCL2 , Glicoproteínas , Macrófagos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular , Proteínas de Sinalização YAP , Animais , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Humanos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Macrófagos/metabolismo , Macrófagos/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Camundongos , Melanoma/patologia , Melanoma/metabolismo , Melanoma/imunologia , Melanoma/genética , Retroalimentação Fisiológica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Microambiente Tumoral , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Progressão da Doença , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Inflammopharmacology ; 32(2): 1253-1261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363475

RESUMO

BACKGROUND: Hypercholesterolemia and the related inflammatory response promote the development of osteoporosis, but whether targeted interventions are protective against this bone metabolic disease remains unknown. The aim of this study was to investigate the association between the use of statins (one well-recognized cholesterol-lowering drug with anti-inflammatory properties) and the risk of osteoporosis using a drug-targeted Mendelian randomization (MR) approach. METHODS: Instrumental variables predicting three cholesterol-lowering target genes (including HGMCR) and the cholesterol effectors mediated by these genes (i.e., total cholesterol, LDL cholesterol, and non-HDL cholesterol) were extracted from expression quantitative trait loci and genome-wide association studies. Inverse variance-weighted (IVW), summary data-based MR (SMR), multivariate MR, and colocalization analysis were used to determine the association of the interventions represented by these instrumental variables with heel bone mineral density (one diagnostic indicator of osteoporosis). RESULTS: The IVW reported that increased levels of HGMCR-mediated total cholesterol, LDL cholesterol, and non-HDL cholesterol were associated with the decreased level of heel bone mineral density (P = 4.086e-10, P = 1.487e-09, P = 1.967e-09). The colocalization analysis supported the relationship between HGMCR-mediated non-HDL cholesterol and heel bone mineral density. The SMR reported that higher expression of HGMCR was associated with the decreased level of this osteoporosis indicator (P = 0.036). The multivariate MR further confirmed the role of HGMCR in the correlation between cholesterol traits and heel bone mineral density, and also reported that estrogen played a mediating role in the above correlations. CONCLUSION: These evidence supported a protective effect of HMGCR-mediated non-HDL cholesterol reduction or statin use against osteoporosis.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Osteoporose , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , LDL-Colesterol , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Osteoporose/tratamento farmacológico , Osteoporose/genética , Polimorfismo de Nucleotídeo Único
3.
Exp Cell Res ; 404(2): 112636, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34019907

RESUMO

Melanoma, which originates from neural crest derived melanocytes, causes severe pain and even death to numerous patients. Previous studies reported that Notchless Homolog 1 (NLE1) plays an important role in cell proliferation, transcription and signal transduction. However, the clinical significance and biological behavior of NLE1 in melanoma remain a mystery. Thus, the role of NLE1 in melanoma was investigated in vitro and in vivo. The expression of NLE1 in melanoma was elevated and the expression level was positively correlated with lymphatic metastasis and tumor stage. In addition, NLE1 knockdown by shRNA specifically inhibited proliferation, enhanced the apoptotic sensitivity and hindered migration of melanoma cells in vitro. Mice xenograft model further showed that NLE1 knockdown could inhibit the tumor formation of melanoma in vivo. Additionally, the induction of apoptosis of melanoma cells by NLE1 knockdown required the participation of a series of apoptosis-related proteins. Besides, NLE1 can activate the PI3K/AKT signaling pathway. In summary, NLE1 was involved in the development and progression of melanoma, which may be a novel potential target for molecular therapy of melanoma.


Assuntos
Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Melanoma/genética , Melanoma/patologia , Proteínas dos Microfilamentos/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Melanoma/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Mediators Inflamm ; 2021: 3456629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720749

RESUMO

BACKGROUND: Inflammatory markers are associated with tumor genesis and progression, but their prognostic significance in osteosarcoma remains unclear. Therefore, we discussed the prognostic value of related inflammatory markers in osteosarcoma through a meta-analysis and systematic review. These inflammatory markers include C-reactive protein (CRP), neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR), and Glasgow prognostic score (GPS). METHODS: The Chinese National Knowledge Infrastructure (CNKI), Wanfang, Chinese Scientific Journals (VIP), PubMed, Embase, and Cochrane libraries were searched. The design of meta-analysis was made based on the PICOS (population, intervention/exposure, control, outcomes, and study design) principles, and STATA 15.1 was used to analyze the data. The Newcastle-Ottawa scale (NOS) was used to assess the quality of included studies. Hazard ratios (HRs) for overall survival (OS) and disease-specific survival (DPS) were extracted for the investigation of the prognostic value of inflammatory markers. RESULTS: Twelve researches with 2162 osteosarcoma patients were included in total. The pooled results showed that elevated NLR, CRP, and GPS are all greatly related to shortening of OS among patients with osteosarcoma (HR = 1.68, P = 0.007, 95% CI: 1.15-2.45; HR = 1.96, P = 0.002, 95% CI: 1.28-3.00; HR = 2.54, P < 0.0001, 95% CI: 1.95-3.31, respectively), and CRP level is significantly associated with shortening of DPS among patients with osteosarcoma (HR = 2.76, 95% CI:2.01-3.80, P < 0.0001), additionally. However, the correlation between LMR or PLR and the prognosis of osteosarcoma is not statistically significant (HR = 0.60, 95% CI: 0.30-1.18, P = 0.138; HR = 1.13, 95% CI: 0.85-1.49, P = 0.405, respectively). The outcomes of subgroup analysis to NLR and CRP suggested that histology, ethnicity, metastasis, and sample size all have an impact on its prognosis of patients with osteosarcoma. CONCLUSION: Worsened prognosis may be related to high levels of NLR, CRP, and GPS before treatment rather than LMR or PLR, which can provide the basis for clinicians to judge the outcomes of prognosis. Trial Registration. PROSPERO (CRD42021249954), https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=249954.


Assuntos
Neoplasias Ósseas/mortalidade , Proteína C-Reativa/análise , Inflamação/complicações , Osteossarcoma/mortalidade , Biomarcadores , Humanos , Linfócitos , Neutrófilos , Prognóstico
5.
Am J Pathol ; 189(1): 147-161, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339839

RESUMO

The terminal complement complex (TCC) is formed on activation of the complement system, a crucial arm of innate immunity. TCC formation on cell membranes results in a transmembrane pore leading to cell lysis. In addition, sublytic TCC concentrations can modulate various cellular functions. TCC-induced effects may play a role in the pathomechanisms of inflammatory disorders of the bone, including rheumatoid arthritis and osteoarthritis. In this study, we investigated the effect of the TCC on bone turnover and repair. Mice deficient for complement component 6 (C6), an essential component for TCC assembly, and mice with a knockout of CD59, which is a negative regulator of TCC formation, were used in this study. The bone phenotype was analyzed in vivo, and bone cell behavior was analyzed ex vivo. In addition, the mice were subjected to a femur osteotomy. Under homeostatic conditions, C6-deficient mice displayed a reduced bone mass, mainly because of increased osteoclast activity. After femur fracture, the inflammatory response was altered and bone formation was disturbed, which negatively affected the healing outcome. By contrast, CD59-knockout mice only displayed minor skeletal alterations and uneventful bone healing, although the early inflammatory reaction to femur fracture was marginally enhanced. These results demonstrate that TCC-mediated effects regulate bone turnover and promote an adequate response to fracture, contributing to an uneventful healing outcome.


Assuntos
Regeneração Óssea , Complexo de Ataque à Membrana do Sistema Complemento , Fraturas do Fêmur , Consolidação da Fratura , Osteoclastos , Animais , Regeneração Óssea/genética , Regeneração Óssea/imunologia , Antígenos CD59/deficiência , Técnicas de Cultura de Células , Complemento C6/deficiência , Complexo de Ataque à Membrana do Sistema Complemento/genética , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Eritrócitos/imunologia , Eritrócitos/metabolismo , Eritrócitos/patologia , Fraturas do Fêmur/genética , Fraturas do Fêmur/imunologia , Fraturas do Fêmur/metabolismo , Fraturas do Fêmur/patologia , Consolidação da Fratura/genética , Consolidação da Fratura/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Osteoclastos/imunologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Ovinos
6.
BMC Musculoskelet Disord ; 21(1): 112, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075617

RESUMO

BACKGROUND: Osteoporosis is a worldwide severe bone disease. This study aimed to evaluate the effect of polyphyllin VII on the genesis of osteoclasts from bone marrow macrophages (BMMs) and its potentiality as a therapeutic drug for osteoporosis. METHODS: BMMs were induced to differentiate into osteoclasts by RANKL and M-CSF. The cells were then treated with various concentrations of polyphyllin VII. Intracellular reactive oxygen species (ROS) measurement assay, resorption pit formation assay, tartrate-resistant acid phosphatase (TRAP) staining and TRAP activity assessment, cell viability assay, active GTPase pull-down assay, immunofluorescent staining, immunoblotting, and RT-PCR were performed. RESULTS: RANKL + M-CSF significantly increased TRAP activity, number of osteoclasts, number and area of lacunae, intracellular content of ROS, protein levels of Nox1, TRAF6, c-Src and p-PI3K, as well as the content of activated GTP-Rac1, which were significantly blocked by polyphyllin VII in a concentration-dependent manner. CONCLUSION: These findings suggested that polyphyllin VII inhibited differentiation of BMMs into osteoclasts through suppressing ROS synthesis, which was modulated by TRAF6-cSrc-PI3k signal transduction pathway including GTP-Rac1 and Nox1. Polyphyllin VII could be a therapeutic drug for osteoporosis.


Assuntos
Genes src/fisiologia , Osteoclastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligante RANK/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saponinas/toxicidade , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Genes src/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Osteoclastos/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores
8.
Gynecol Endocrinol ; 31(3): 183-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25384921

RESUMO

BACKGROUND: Postmenopausal osteoporosis is now hypothetically considered to be an autoimmune and inflammatory process in which many pro-inflammatory and T cell-derived cytokines play important roles in the loss of bone mass. For instance, interleukin-2 (IL-2), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) secreted by Th1 and IL-6, IL-4, and IL-10 secreted by Th2 have been shown to be involved in the pathogenesis of osteoporosis. Interleukin-17 (IL-17) is a characteristic cytokine secreted by Th17 cells of the CD4 + subgroup. Although IL-17 has been shown to enhance bone resorption in ovariectomized mouse model, bone cells and genetic research, human-related studies of IL-17 are few. METHODS: According to WHO classification of osteoporosis by the T scores of BMD, the subjects were divided into the postmenopausal osteoporosis group (T scores≤-2.5), the postmenopausal osteopenia group (-2.5 < T scores<-1), and the postmenopausal normal BMD group (T scores≥-1); 30 subjects in each group. Cytometric bead array (CBA) technique was employed for serum determination of the primary indexes including IL-17A, IL-2, IFN-γ, TNF-α, IL-6, IL-4, and IL-10 concentrations in the 90 volunteers. In the meantime, serum calcium, phosphorus, magnesium, and alkaline phosphatase concentrations were also determined in the patients. One-way analysis of variance (one-way ANOVA) was employed in data analysis to determine whether the testing results of various parameters had significant differences. The bivariate correlation was tested with the Pearson correlation coefficient. When p < 0.05, the difference was considered to have statistical significance. RESULTS: Serum IL-17A concentration was significantly higher in the postmenopausal osteoporosis group than in the postmenopausal osteopenia group and the postmenopausal normal BMD group, but the difference between the postmenopausal osteopenia group and the postmenopausal normal BMD group had no statistical significance. IL-17A was negatively correlated with BMD. To our knowledge, we discovered for the first time that serum concentrations of IFN-γ and IL-4 were significantly lower in the postmenopausal osteoporosis group than in the postmenopausal normal BMD group; IFN-γ and IL-4 were positively correlated with BMD. In addition, we also determined that BMI was negatively correlated with BMD; IL-17A was positively correlated with serum calcium. However, no significant differences in IL-6, TNF-α, IL-2, and IL-10 were observed among the three groups; these three factors were not correlated with BMD. CONCLUSIONS: Our experiments have confirmed the roles of IL-17 in the pathogenesis of postmenopausal osteoporosis and in the promotion of bone resorption. Targeted therapy of IL-17, IFN-γ, and IL-4 may be beneficial in the treatment of patients with postmenopausal osteoporosis. Our experiments have also confirmed the roles of IFN-γ and IL-4 in the pathogenesis of postmenopausal osteoporosis and in the inhibition of bone resorption.


Assuntos
Citocinas/sangue , Osteoporose Pós-Menopausa/sangue , Fosfatase Alcalina/sangue , Cálcio/sangue , Feminino , Humanos , Magnésio/sangue , Pessoa de Meia-Idade , Fósforo/sangue
9.
Chem Biol Interact ; 373: 110354, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706893

RESUMO

Osteosarcoma (OS) is a serve and the most frequent primary malignant tumor of bone. Chitosan was reported to have anti-tumor effect on human cancers including OS. However, the molecular mechanism by which chitosan suppresses tumor growth is not fully illustrated. In this study, human OS cell lines, including both Saos-2 and U2OS cells, were used to dissect the underlying mechanisms. RNA sequencing results show that a candidate biomarker family with sequence similarity 172 member A (FAM172A) was up-regulated in both of the two cell lines treated with chitosan. We observed that the mitogen-activated protein kinase (MAPK) signaling pathway could be inactivated by chitosan, and the MAPK inhibition caused by chitosan was reversed by FAM172A knockdown. Moreover, we uncovered a direct interaction between C-terminal domain of FAM172A (311-415) and mitogen-activated protein kinase kinase 1 (MEK1) (270-307) by immunoprecipitation assay. Finally, we also found that chitosan could bind with subunit p85 of PI3K to further inactivate the PI3K/Akt pathway. Taken together, our study demonstrates that chitosan binds with PI3K p85 subunit to suppress the activity of PI3K/Akt pathway to up-regulate the expression of FAM172A, and which exerts its function by suppressing phosphorylation of MEK1/2 and blocking the activity of MAPK/ERK signaling pathway. Taken together, our study deepens the understanding of the molecular mechanism of MAPK/ERK pathway inhibition induced by chitosan, and provides insights into the development of new targets to enhance the pharmacological effect of chitosan against OS.


Assuntos
Neoplasias Ósseas , Quitosana , Osteossarcoma , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quitosana/farmacologia , Osteossarcoma/metabolismo , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proteínas/metabolismo
10.
Oxid Med Cell Longev ; 2020: 3035624, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32952848

RESUMO

Arsenic trioxide (As2O3) is a promising effective chemotherapeutic agent for cancer treatment; however, how and through what molecular mechanisms the oxidative damage of As2O3 is controlled remains poorly understood. Recently, the involvement of dysregulated long noncoding RNA ovarian tumor domain containing 6B antisense RNA1 (lncRNA OTUD6B-AS1) in tumorigenesis is established. Here, for the first time, we characterize the regulation of As2O3 in the oxidative damage against bladder cancer via lncRNA OTUD6B-AS1. As2O3 could activate lncRNA OTUD6B-AS1 transcription in bladder cancer cells, and these findings were validated in a xenograft tumor model. Functional assays showed that lncRNA OTUD6B-AS1 dramatically exacerbated As2O3-mediated oxidative damage by inducing oxidative stress. Mechanistically, As2O3 increased levels of metal-regulatory transcription factor 1 (MTF1), which regulates lncRNA OTUD6B-AS1, in response to oxidative stress. Further, lncRNA OTUD6B-AS1 inhibited mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) expression by stabilizing miR-6734-5p, which contributed to cytotoxicity by enhancing oxidative stress. Together, our findings offer new insights into the mechanism of As2O3-induced oxidative damage and identify important factors in the pathway, As2O3/lncRNA OTUD6B-AS1/miR-6734-5p/IDH2, expanding the knowledge of activity of As2O3 as cancer treatment.


Assuntos
Trióxido de Arsênio/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , MicroRNAs/metabolismo , Estresse Oxidativo , RNA Longo não Codificante/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , MicroRNAs/genética , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator MTF-1 de Transcrição
11.
Cancer Biol Ther ; 21(3): 231-240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31718519

RESUMO

Despite improvements in surgical resection and adjuvant chemotherapy, the prognosis and outcomes of patients with osteosarcoma remains poor due to the occurrence of metastasis or relapse. Monocyte chemoattractant protein-1-induced protein-1 (MCPIP1), a zinc-finger RNA-binding protein, is known to regulate inflammatory responses and repress breast cancer growth. However, the regulation of MCPIP1 by microRNAs has not been clearly elucidated in osteosarcoma. In this study, we found that miR-421 expression was upregulated and MCPIP1 expression was downregulated in the osteosarcoma specimens from patients. Moreover, MCPIP1 expression was inversely correlated with miR-421 expression in the clinical samples. Furthermore, the upregulation of miR-421 and downregulation of MCPIP1 resulted in poor overall survival and severe disease progression, respectively, in the patients with osteosarcoma. Bioinformatics analysis and luciferase reporter gene assays confirmed that miR-421 specifically targets and binds to the 3'-UTR of MCPIP1. The overexpression of miR-421 induced cell proliferation, invasion, and migration, and the release of pro-inflammatory IL-6 in cultured human osteosarcoma cells. Additionally, the administration of miR-421 to tumor-bearing mice facilitated osteosarcoma growth by downregulating MCPIP1 expression. Taken together, these findings indicate that miR-421 is able to promote the development of osteosarcoma by regulating MCPIP1 expression, and can be a potential therapeutic target for osteosarcoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/patologia , RNA Circular/genética , Ribonucleases/metabolismo , Fatores de Transcrição/metabolismo , Adolescente , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Osteossarcoma/genética , Osteossarcoma/metabolismo , Prognóstico , Ribonucleases/genética , Taxa de Sobrevida , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Sci Rep ; 6: 37062, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830833

RESUMO

Osteosarcoma, the most common primary malignant bone tumor, usually arises in the metaphysis of long bones. Amplification and mutation of the epidermal growth factor receptor (EGFR) gene represent signature genetic abnormalities encountered in osteosarcoma. Noscapine is a benzylisoquinoline alkaloid derived from the opium poppy Papaver somniferum. Recently several studies have suggested its anti-cancer effect in melanoma, ovarian cancer, gliomas, breast cancer, lung cancer, and colon cancer. However, the underlying molecular mechanism for its anti-cancer effect still remains unclear. In this paper, we found the mechanism of noscapine effectively suppressed proliferation and invasion of MG63 cell line by inhibiting the phosphorylation of EGFR and its downstream pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Noscapina/farmacologia , Osteossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Terapia de Alvo Molecular , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Noscapina/química , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Papaver/química , Fosforilação/efeitos dos fármacos , Fosfotirosina/análise , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Med Rep ; 14(2): 1054-60, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27277157

RESUMO

Osteonecrosis, also termed aseptic necrosis, is the cellular death of bone components due to interruption of the blood supply. Glucocorticoid (GC) therapy is a common non-traumatic cause of osteonecrosis. However, the mechanism by which GCs induce osteonecrosis remains to be elucidated. The aim of the present study was to investigate the effects of GCs on osteoclast and osteoblast differentiation and function in a GC­induced osteonecrosis mouse model. BALB/c male mice (n=40; 4­weeks­old) were treated with dexamethasone and asparaginase for 8 weeks. The control group (n=20) was administered normal saline. The results demonstrated that the GC-treated group had a lower mean weight compared with the control group. Morphologically, 16/37 (43%) mice demonstrated significant osteonecrotic lesions in the GC­treated group. However, osteonecrotic lesions were not observed in the mice of the control group. Furthermore, immunohistochemistry demonstrated that the GC­treated group had a higher level of osteoprotegerin compared with the control group, without any change in the expression of receptor activator of nuclear factor­κB ligand. In addition, tartarate­resistant acid-phosphatase staining demonstrated significantly decreased osteoclasts in the areas of bone destruction in the GCs-treated group. Furthermore, the present study demonstrated that GCs increased expression levels of osterix and osteocalcin, and decreased expression of matrix metallopeptidase­9 to regulate the differentiation and function of osteoblasts and osteoclasts. The results of the present study suggested that GCs influence bone remolding resulting in decreased osteoclasts formation/differentiation. Therefore, regulating the differentiation and activity of the osteoclasts may be beneficial to the control and treatment of osteonecrosis.


Assuntos
Glucocorticoides/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteonecrose/metabolismo , Animais , Biomarcadores , Peso Corporal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Modelos Animais de Doenças , Expressão Gênica , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Osteonecrose/tratamento farmacológico , Osteonecrose/patologia , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fosfatase Ácida Resistente a Tartarato/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo
14.
Biol Trace Elem Res ; 152(3): 396-402, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23532566

RESUMO

Glucocorticoids (GC) are potent anti-inflammatory agents and widely used for the treatment of many immune-mediated and inflammatory diseases, whereas GC-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis and significantly increases the patients' morbidity and mortality. GIOP is characterized as diminished osteogenesis and accelerated bone resorption. Yeast-incorporated gallium (YG) as an organic compound not only reduces elements-associated toxicity, but also maintains its therapeutic effect on improving bone loss or promoting fracture healing in ovariectomized female rats. The aim of this study was to examine whether YG could prevent GC-induced bone loss. Five-month-old male Sprague-Dawley rats were randomly divided into three groups (n = 6): two groups were administered dexamethasone (0.1 mg/kg/day) or vehicle (PBS) subcutaneously for 5 weeks; one other group was received dexamethasone subcutaneously and YG (120 µg/kg/day) orally. Trabecular bone microarchitectural parameters, bone mineral density (BMD), bone strength, body weight, and serum biochemical markers of bone resorption and formation were examined. Compared to the GC alone group, treatment with YG not only prevented microarchitectural deterioration of trabecular bone volume relative to tissue volume, trabecular number, and trabecular separation, but also significantly improved BMD, mechanical strength, and body weight in GC-treated rats. Moreover, YG decreased tartrate-resistant acid phosphatase 5b level but failed to change alkaline phosphatase level in GC-treated rats. This is the first study to show that YG prominently attenuates bone loss and microarchitectural deterioration and inhibits the increased bone resorption in GIOP. It implies that YG might be an alternative therapy for prevention of GC-induced bone loss in humans.


Assuntos
Reabsorção Óssea/prevenção & controle , Dexametasona/efeitos adversos , Gálio/uso terapêutico , Glucocorticoides/efeitos adversos , Osteoporose/tratamento farmacológico , Leveduras/química , Absorciometria de Fóton , Animais , Densidade Óssea , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/patologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Gálio/administração & dosagem , Masculino , Osteoporose/induzido quimicamente , Osteoporose/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA