Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(24): e2120083119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666870

RESUMO

Human pancreatic islets highly express CD59, which is a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein and is required for insulin secretion. How cell-surface CD59 could interact with intracellular exocytotic machinery has so far not been described. We now demonstrate the existence of CD59 splice variants in human pancreatic islets, which have unique C-terminal domains replacing the GPI-anchoring signal sequence. These isoforms are found in the cytosol of ß-cells, interact with SNARE proteins VAMP2 and SNAP25, colocalize with insulin granules, and rescue insulin secretion in CD59-knockout (KO) cells. We therefore named these isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2). Antibodies raised against each isoform revealed that expression of both IRIS-1 and IRIS-2 is significantly lower in islets isolated from human type 2 diabetes (T2D) patients, as compared to healthy controls. Further, glucotoxicity induced in primary, healthy human islets led to a significant decrease of IRIS-1 expression, suggesting that hyperglycemia (raised glucose levels) and subsequent decreased IRIS-1 expression may contribute to relative insulin deficiency in T2D patients. Similar isoforms were also identified in the mouse CD59B gene, and targeted CRISPR/Cas9-mediated knockout showed that these intracellular isoforms, but not canonical CD59B, are involved in insulin secretion from mouse ß-cells. Mouse IRIS-2 is also down-regulated in diabetic db/db mouse islets. These findings establish the endogenous existence of previously undescribed non­GPI-anchored intracellular isoforms of human CD59 and mouse CD59B, which are required for normal insulin secretion.


Assuntos
Processamento Alternativo , Diabetes Mellitus , Antígenos CD59/genética , Antígenos CD59/metabolismo , Diabetes Mellitus/genética , Humanos , Secreção de Insulina , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
FASEB J ; 33(11): 12425-12434, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31412214

RESUMO

CD59 is a glycosylphosphatidylinositol (GPI)-anchored cell surface inhibitor of the complement membrane attack complex (MAC). We showed previously that CD59 is highly expressed in pancreatic islets but is down-regulated in rodent models of diabetes. CD59 knockdown but not enzymatic removal of cell surface CD59 led to a loss of glucose-stimulated insulin secretion (GSIS), suggesting that an intracellular pool of CD59 is required. In this current paper, we now report that non-GPI-anchored CD59 is present in the cytoplasm, colocalizes with exocytotic protein vesicle-associated membrane protein 2, and completely rescues GSIS in cells lacking endogenous CD59 expression. The involvement of cytosolic non-GPI-anchored CD59 in GSIS is supported in phosphatidylinositol glycan class A knockout GPI anchor-deficient ß-cells, in which GSIS is still CD59 dependent. Furthermore, site-directed mutagenesis demonstrated different structural requirements of CD59 for its 2 functions, MAC inhibition and GSIS. Our results suggest that CD59 is retrotranslocated from the endoplasmic reticulum to the cytosol, a process mediated by recognition of trimmed N-linked oligosaccharides, supported by the partial glycosylation of non-GPI-anchored cytosolic CD59 as well as the failure of N-linked glycosylation site mutant CD59 to reach the cytosol or rescue GSIS. This study thus proposes the previously undescribed existence of non-GPI-anchored cytosolic CD59, which is required for insulin secretion.-Golec, E., Rosberg, R., Zhang, E., Renström, E., Blom, A. M., King, B. C. A cryptic non-GPI-anchored cytosolic isoform of CD59 controls insulin exocytosis in pancreatic ß-cells by interaction with SNARE proteins.


Assuntos
Antígenos CD59/metabolismo , Citosol/metabolismo , Exocitose , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas SNARE/metabolismo , Animais , Antígenos CD59/genética , Células CHO , Cricetulus , Insulina/genética , Células Secretoras de Insulina/citologia , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Ratos , Proteínas SNARE/genética
3.
Diabetologia ; 60(8): 1522-1533, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28500395

RESUMO

AIMS/HYPOTHESIS: Inflammasome activation and subsequent IL-1ß production is a driver of islet pathology in type 2 diabetes. Oligomers, but not mature amyloid fibrils, of human islet amyloid polypeptide (IAPP), which is co-secreted with insulin, trigger NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome activation. C4b-binding protein (C4BP), present in serum, binds to IAPP and affects transition of IAPP monomers and oligomers to amyloid fibrils. We therefore hypothesised that C4BP inhibits IAPP-mediated inflammasome activation and IL-1ß production. METHODS: Macrophages were exposed to IAPP in the presence or absence of plasma-purified human C4BP, and inflammasome activation was assessed by IL-1ß secretion as detected by ELISA and reporter cell lines. IAPP fibrillation was assessed by thioflavin T assay. Uptake of IAPP-C4BP complexes and their effects on phagolysosomal stability were assessed by flow cytometry and confocal microscopy. The effect of C4BP regulation of IAPP-mediated inflammasome activation on beta cell function was assessed using a clonal rat beta cell line. Immunohistochemistry was used to examine the association of IAPP amyloid deposits and macrophage infiltration in isolated human and mouse pancreatic islets, and expression of C4BP from isolated human pancreatic islets was assessed by quantitative PCR, immunohistochemistry and western blot. RESULTS: C4BP significantly inhibited IAPP-mediated IL-1ß secretion from primed macrophages at physiological concentrations in a dose-dependent manner. C4BP bound to and was internalised together with IAPP. C4BP did not affect IAPP uptake into phagolysosomal compartments, although it did inhibit its formation into amyloid fibrils. The loss of macrophage phagolysosomal integrity induced by IAPP incubation was inhibited by co-incubation with C4BP. Supernatant fractions from macrophages activated with IAPP inhibited both insulin secretion and viability of clonal beta cells in an IL-1ß-dependent manner but the presence of C4BP during macrophage IAPP incubation rescued beta cell function and viability. In human and mouse islets, the presence of amyloid deposits correlated with higher numbers of infiltrating macrophages. Isolated human islets expressed and secreted C4BP, which increased with addition of IL-1ß. CONCLUSIONS/INTERPRETATION: IAPP deposition is associated with inflammatory cell infiltrates in pancreatic islets. C4BP blocks IAPP-induced inflammasome activation by preventing the loss of macrophage phagolysosomal integrity required for NLRP3 activation. The consequence of this is the preservation of beta cell function and viability. C4BP is secreted directly from human pancreatic islets and this increases in response to inflammatory cytokines. We therefore propose that C4BP acts as an extracellular chaperone protein that limits the proinflammatory effects of IAPP.


Assuntos
Proteína de Ligação ao Complemento C4b/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Idoso , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Insulina/metabolismo , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Ratos
4.
J Biol Chem ; 291(41): 21644-21655, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27566545

RESUMO

C4BP (C4b-binding protein) is a polymer of seven identical α chains and one unique ß chain synthesized in liver and pancreas. We showed previously that C4BP enhances islet amyloid polypeptide (IAPP) fibril formation in vitro Now we report that polymeric C4BP strongly inhibited lysis of human erythrocytes incubated with monomeric IAPP, whereas no lysis was observed after incubation with preformed IAPP fibrils. In contrast, incubation with the monomeric α-chain of C4BP was less effective. These data indicate that polymeric C4BP with multiple binding sites for IAPP neutralizes lytic activity of IAPP. Furthermore, addition of monomeric IAPP to a rat insulinoma cell line (INS-1) resulted in decreased cell viability, which was restored in the presence of physiological concentrations of C4BP. Treatment of INS-1 cells and primary rat islets with IAPP also diminished their ability to secrete insulin upon stimulation with glucose, which was reversed in the presence of C4BP. Further, C4BP was internalized together with IAPP into INS-1 cells. Pathway analyses of mRNA expression microarray data indicated that cells exposed to C4BP and IAPP in comparison with IAPP alone increased expression of genes involved in cholesterol synthesis. Depletion of cholesterol through methyl-ß-cyclodextrin or cholesterol oxidase abolished the protective effect of C4BP on IAPP cytotoxicity of INS-1 cells. Also, inhibition of phosphoinositide 3-kinase but not NF-κB had a similar effect. Taken together, C4BP protects ß-cells from IAPP cytotoxicity by modulating IAPP fibril formation extracellularly and also, after uptake by the cells, by enhancing cholesterol synthesis.


Assuntos
Colesterol/biossíntese , Proteína de Ligação ao Complemento C4b/metabolismo , Regulação da Expressão Gênica/fisiologia , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/biossíntese , Animais , Linhagem Celular Tumoral , Colesterol Oxidase/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Wistar
5.
Biochem Biophys Res Commun ; 491(3): 740-746, 2017 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-28739256

RESUMO

High blood glucose triggers the release of insulin from pancreatic beta cells, but if chronic, causes cellular stress, partly due to impaired Ca2+ homeostasis. Ca2+ influx is controlled by voltage-gated calcium channels (CaV) and high density of CaV in the plasma membrane could lead to Ca2+ overload. Trafficking of the pore-forming CaVα1 subunit to the plasma membrane is regulated by auxiliary subunits, such as the CaVß2a subunit. This study investigates, using Ca2+ imaging and immunohistochemistry, the role of palmitoylation of CaVß2a in maintaining Ca2+ homeostasis and beta cell function. RNA sequencing data showed that gene expression of human CACNB2, in particular CACNB2A (CaVß2a), is highest in islets when compared to other tissues. Since CaVß2a can be regulated through palmitoylation of its two cysteines, CaVß2a and its mutant form were overexpressed in pancreatic beta cells. Palmitoylated CaVß2a tethered to the plasma membrane and colocalized with CaV1.2 while the mutant form remained in the cytosol. Interestingly, CaVß2a overexpression raised basal intracellular Ca2+ and increased beta cell apoptosis. Our study shows that palmitoylation of CaVß2a is necessary for CaVα1 trafficking to the plasma membrane. However, excessive number of palmitoylated CaVß2a leads to Ca2+ overload and beta cell death.


Assuntos
Apoptose/fisiologia , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Células Secretoras de Insulina/fisiologia , Lipoilação/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Células Secretoras de Insulina/citologia , Ativação do Canal Iônico/fisiologia , Ligação Proteica , Subunidades Proteicas , Ratos
6.
Proc Natl Acad Sci U S A ; 111(38): 13924-9, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201977

RESUMO

Genetic variation can modulate gene expression, and thereby phenotypic variation and susceptibility to complex diseases such as type 2 diabetes (T2D). Here we harnessed the potential of DNA and RNA sequencing in human pancreatic islets from 89 deceased donors to identify genes of potential importance in the pathogenesis of T2D. We present a catalog of genetic variants regulating gene expression (eQTL) and exon use (sQTL), including many long noncoding RNAs, which are enriched in known T2D-associated loci. Of 35 eQTL genes, whose expression differed between normoglycemic and hyperglycemic individuals, siRNA of tetraspanin 33 (TSPAN33), 5'-nucleotidase, ecto (NT5E), transmembrane emp24 protein transport domain containing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1 cells resulted in reduced glucose-stimulated insulin secretion. In addition, we provide a genome-wide catalog of allelic expression imbalance, which is also enriched in known T2D-associated loci. Notably, allelic imbalance in paternally expressed gene 3 (PEG3) was associated with its promoter methylation and T2D status. Finally, RNA editing events were less common in islets than previously suggested in other tissues. Taken together, this study provides new insights into the complexity of gene regulation in human pancreatic islets and better understanding of how genetic variation can influence glucose metabolism.


Assuntos
Genômica , Glucose , Transcriptoma/fisiologia , 5'-Nucleotidase/biossíntese , 5'-Nucleotidase/genética , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Glucose/genética , Glucose/metabolismo , Humanos , Ilhotas Pancreáticas , Masculino , Edição de RNA/fisiologia , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Tetraspaninas/biossíntese , Tetraspaninas/genética , Proteínas de Transporte Vesicular/biossíntese , Proteínas de Transporte Vesicular/genética , Quinases Ativadas por p21/biossíntese , Quinases Ativadas por p21/genética
7.
Diabetologia ; 59(9): 1928-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27338624

RESUMO

AIMS/HYPOTHESIS: Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart (-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. METHODS: CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca(2+) oscillation patterns and exocytosis were studied in mouse islets. RESULTS: We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca(2+) signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. CONCLUSIONS/INTERPRETATION: We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Glucagon/metabolismo , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Western Blotting , Sinalização do Cálcio/fisiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangue , Eletrofisiologia , Exocitose/genética , Exocitose/fisiologia , Feminino , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Homeostase , Humanos , Imuno-Histoquímica , Hibridização In Situ , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase em Tempo Real
8.
Hum Mol Genet ; 23(24): 6419-31, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015099

RESUMO

Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Insulina/genética , Proteínas com Homeodomínio LIM/genética , Proinsulina/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Fatores de Transcrição/genética , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Loci Gênicos , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Proinsulina/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Gastroenterology ; 149(7): 1920-1931.e8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26302488

RESUMO

BACKGROUND & AIMS: Neutrophils are involved in the development of acute pancreatitis (AP), but it is not clear how neutrophil-induced tissue damage is regulated. In addition to secreting antimicrobial compounds, activated neutrophils eliminate invading microorganisms by expelling nuclear DNA and histones to form extracellular web-like structures called neutrophil extracellular traps (NETs). However, NETs have been reported to contribute to organ dysfunction in patients with infectious diseases. We investigated whether NETs contribute to the development of AP in mice. METHODS: AP was induced in C57BL/6 mice by infusion of taurocholate into the pancreatic duct or by intraperitoneal administration of L-arginine. Pancreata were collected and extracellular DNA was detected by Sytox green staining, levels of CXC chemokines, histones, and cytokines also were measured. Cell-free DNA was quantified in plasma samples. Signal transducer and activator of transcription 3 phosphorylation and trypsin activation were analyzed in isolated acinar cells. NETs were depleted by administration of DNase I to mice. Plasma was obtained from healthy individuals (controls) and patients with severe AP. RESULTS: Infusion of taurocholate induced formation of NETs in pancreatic tissues of mice and increased levels of cell-free DNA in plasma. Neutrophil depletion prevented taurocholate-induced deposition of NETs in the pancreas. Administration of DNase I to mice reduced neutrophil infiltration and tissue damage in the inflamed pancreas and lung, and decreased levels of blood amylase, macrophage inflammatory protein-2, interleukin 6, and high-mobility groups protein 1. In mice given taurocholate, DNase I administration also reduced expression of integrin α M (macrophage-1 antigen) on circulating neutrophils. Similar results occurred in mice with L-arginine-induced AP. Addition of NETs and histones to acinar cells induced formation of trypsin and activation of signal transducer and activator of transcription 3; these processes were blocked by polysialic acid. Patients with severe AP had increased plasma levels of NET components compared with controls. CONCLUSIONS: NETs form in the pancreata of mice during the development of AP, and NET levels are increased in plasma from patients with AP, compared with controls. NETs regulate organ inflammation and injury in mice with AP, and might be targeted to reduce pancreatic tissue damage and inflammation in patients.


Assuntos
Armadilhas Extracelulares/metabolismo , Mediadores da Inflamação/sangue , Neutrófilos/enzimologia , Pâncreas/enzimologia , Pancreatite/enzimologia , Tripsina/metabolismo , Doença Aguda , Animais , Arginina , Estudos de Casos e Controles , DNA/sangue , Desoxirribonuclease I/farmacologia , Modelos Animais de Doenças , Ativação Enzimática , Humanos , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Pâncreas/patologia , Pancreatite/sangue , Pancreatite/induzido quimicamente , Pancreatite/imunologia , Pancreatite/patologia , Pancreatite/prevenção & controle , Índice de Gravidade de Doença , Ácido Taurocólico
10.
Biochem Biophys Res Commun ; 460(3): 518-24, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25797618

RESUMO

CD55 is a glycosylphosphatidylinositol-anchored protein, which inhibits complement activation by acting on the complement C3 convertases. CD55 is widely localized in the cholesterol rich regions of the cell plasma membrane termed membrane rafts. CD55 is attached to these specialized regions via a GPI link on the outer leaflet of the plasma membrane. Membrane rafts anchor many important signaling proteins, which control several cellular functions within the cell. For example, we recently demonstrated that the membrane raft protein and complement inhibitor CD59 also controls insulin secretion by an intracellular mechanism. Therefore, we have in this study aimed at addressing the expression and function of CD55 in pancreatic beta cells. To this end, we observe that CD55 is highly expressed in INS1 832/13 beta cells as well as human pancreatic islets. Diabetic human islets show a tendency for increased expression of CD55 when compared to the healthy controls. Importantly, silencing of CD55 in INS1 832/13 cells does not affect their insulin secretory capacity. On the other hand, silencing of CD55 diminished the intensity of membrane rafts as determined by Atto-SM staining. We hence conclude that CD55 expression is affected by glycemic status in human islets and plays a critical role in maintaining the conserved structure of rafts in pancreatic islets, which is similar to that of the related complement inhibitor CD59. However CD55 does not interfere with insulin secretion in beta cells, which is in sharp contrast to the action of the complement inhibitor CD59.


Assuntos
Antígenos CD55/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Antígenos CD55/genética , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Secreção de Insulina , Ratos
11.
Hum Mol Genet ; 21(1): 196-207, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21965303

RESUMO

The transcription factor T-cell factor 7-like 2 (TCF7L2) confers type 2 diabetes risk mainly through impaired insulin secretion, perturbed incretin effect and reduced beta-cell survival. The aim of this study was to identify the molecular mechanism through which TCF7L2 influences beta-cell survival. TCF7L2 target genes in INS-1 cells were identified using Chromatin Immunoprecipitation. Validation of targets was obtained by: siRNA silencing, real-time quantitative polymerase chain reaction, electrophoretic mobility shift assay, luciferase reporter assays and western blot. Apoptosis rate was measured by DNA degradation and caspase-3 content. Islet viability was estimated by measuring metabolic rate. TCF7L2 binds to 3646 gene promoters in INS-1 cells in high or low glucose, including Tp53, Pten, Uggt1, Adamts9 and Fto. SiRNA-mediated reduction in TCF7L2 activity resulted in increased apoptosis and increased expression of Tp53, which resulted in elevated p53 protein activity and an increased expression of the p53 target gene Tp53inp1 (encoding p53-induced-nuclear-protein 1). Reversing the increase in p53INP1 protein expression, seen after Tcf7l2 silencing, protected INS-1 cells from Tcf7l2 depletion-induced apoptosis. This result was replicated in primary rat islets. The risk T-allele of rs7903146 is associated with increased TCF7L2 mRNA expression and transcriptional activity. On the other hand, in vitro silencing of TCF7L2 lead to increased apoptosis. One possibility is that the risk T-allele increases expression of an inhibitory TCF7L2 isoform with lower transcriptional activity. These results identify the p53-p53INP1 pathway as a molecular mechanism through which TCF7L2 may affect beta-cell survival and established a molecular link between Tcf7l2 and two type 2 diabetes-associated genes, Tp53inp1 and Adamts9.


Assuntos
Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Proteínas de Choque Térmico/metabolismo , Células Secretoras de Insulina/citologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Linhagem Celular , Sobrevivência Celular , Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica , Humanos , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares , Ratos , Ratos Wistar , Transdução de Sinais , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína Supressora de Tumor p53/genética
12.
Nat Cell Biol ; 9(4): 453-60, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17369816

RESUMO

Pancreatic islets have a central role in blood glucose homeostasis. In addition to insulin-producing beta-cells and glucagon-secreting alpha-cells, the islets contain somatostatin-releasing delta-cells. Somatostatin is a powerful inhibitor of insulin and glucagon secretion. It is normally secreted in response to glucose and there is evidence suggesting its release becomes perturbed in diabetes. Little is known about the control of somatostatin release. Closure of ATP-regulated K(+)-channels (K(ATP)-channels) and a depolarization-evoked increase in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) have been proposed to be essential. Here, we report that somatostatin release evoked by high glucose (>or=10 mM) is unaffected by the K(ATP)-channel activator diazoxide and proceeds normally in K(ATP)-channel-deficient islets. Glucose-induced somatostatin secretion is instead primarily dependent on Ca(2+)-induced Ca(2+)-release (CICR). This constitutes a novel mechanism for K(ATP)-channel-independent metabolic control of pancreatic hormone secretion.


Assuntos
Canais de Cálcio Tipo R/fisiologia , Cálcio/metabolismo , Glucose/farmacologia , Somatostatina/metabolismo , Animais , Cálcio/farmacologia , Canais de Cálcio Tipo R/genética , Citofotometria , Diazóxido/farmacologia , Relação Dose-Resposta a Droga , Eletrofisiologia , Imuno-Histoquímica , Técnicas In Vitro , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Isradipino/farmacologia , Compostos Macrocíclicos/farmacologia , Manoeptulose/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Microscopia Confocal , Oxazóis/farmacologia , Potássio/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/fisiologia , Rianodina/farmacologia , Células Secretoras de Somatostatina/efeitos dos fármacos , Células Secretoras de Somatostatina/metabolismo
13.
J Immunol ; 188(8): 4103-12, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22430737

RESUMO

Thioredoxin (Trx)-1 is a small, ubiquitously expressed redox-active protein with known important cytosolic functions. However, Trx1 is also upregulated in response to various stress stimuli, is found both at the cell surface and secreted into plasma, and has known anti-inflammatory and antiapoptotic properties. Previous animal studies have demonstrated that exogenous Trx1 delivery can have therapeutic effects in a number of disease models and have implicated an interaction of Trx1 with the complement system. We found that Trx1 is expressed in a redox-active form at the surface of HUVEC and acts as an inhibitor of complement deposition in a manner dependent on its Cys-Gly-Pro-Cys active site. Inhibition occurred at the point of the C5 convertase of complement, regulating production of C5a and the membrane attack complex. A truncated form of Trx1 also exists in vivo, Trx80, which has separate nonoverlapping functions compared with the full-length Trx1. We found that Trx80 activates the classical and alternative pathways of complement activation, leading to C5a production, but the inflammatory potential of this was also limited by the binding of inhibitors C4b-binding protein and factor H. This study adds a further role to the known anti-inflammatory properties of Trx1 and highlights the difference in function between the full-length and truncated forms.


Assuntos
Complemento C5a/imunologia , Fragmentos de Peptídeos/imunologia , Tiorredoxinas/imunologia , Animais , Ativação do Complemento , Convertases de Complemento C3-C5/imunologia , Convertases de Complemento C3-C5/metabolismo , Proteína de Ligação ao Complemento C4b/imunologia , Proteína de Ligação ao Complemento C4b/metabolismo , Complemento C5a/metabolismo , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/patologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Tiorredoxinas/química , Tiorredoxinas/metabolismo
14.
Cell Metab ; 7(1): 57-67, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18177725

RESUMO

CAPS1 and CAPS2 regulate dense-core vesicle release of transmitters and hormones in neuroendocrine cells, but their precise roles in the secretory process remain enigmatic. Here we show that CAPS2(-/-) and CAPS1(+/-);CAPS2(-/-) mice, despite having increased insulin sensitivity, are glucose intolerant and that this effect is attributable to a marked reduction of glucose-induced insulin secretion. This correlates with diminished Ca(2+)-dependent exocytosis, a reduction in the size of the morphologically docked pool, a decrease in the readily releasable pool of secretory vesicles, slowed granule priming, and suppression of second-phase (but not first-phase) insulin secretion. In beta cells of CAPS1(+/-);CAPS2(-/-) mice, the lowered insulin content and granule numbers were associated with an increase in lysosome numbers and lysosomal enzyme activity. We conclude that although CAPS proteins are not required for Ca(2+)-dependent exocytosis to proceed, they exert a modulatory effect on insulin granule priming, exocytosis, and stability.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Eletrofisiologia , Exocitose , Imuno-Histoquímica , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Pancrelipase/metabolismo , Pancrelipase/ultraestrutura
15.
J Biol Chem ; 287(14): 10824-33, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334700

RESUMO

Islet amyloid polypeptide (IAPP) is synthesized in pancreatic ß-cells and co-secreted with insulin. Aggregation and formation of IAPP-amyloid play a critical role in ß-cell death in type 2 diabetic patients. Because Aß-fibrils in Alzheimer disease activate the complement system, we have here investigated specific interactions between IAPP and complement factors. IAPP fibrils triggered limited activation of complement in vitro, involving both the classical and the alternative pathways. Direct binding assays confirmed that IAPP fibrils interact with globular head domains of complement initiator C1q. Furthermore, IAPP also bound complement inhibitors factor H and C4b-binding protein (C4BP). Recombinant C4BP mutants were used to show that complement control protein (CCP) domains 8 and 2 of the α-chain were responsible for the strong, hydrophobic binding of C4BP to IAPP. Immunostaining of pancreatic sections from type 2 diabetic patients revealed the presence of complement factors in the islets and varying degree of co-localization between IAPP fibrils and C1q, C3d, as well as C4BP and factor H but not membrane attack complex. Furthermore, C4BP enhanced formation of IAPP fibrils in vitro. We conclude that C4BP binds to IAPP thereby limiting complement activation and may be enhancing formation of IAPP fibrils from cytotoxic oligomers.


Assuntos
Proteína de Ligação ao Complemento C4b/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Multimerização Proteica , Amiloide/química , Amiloide/metabolismo , Animais , Proteína de Ligação ao Complemento C4b/química , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Pâncreas/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Secundária de Proteína , Transporte Proteico , Ratos
16.
Heliyon ; 9(2): e13081, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36718155

RESUMO

The pancreatic islet is a highly structured micro-organ that produces insulin in response to rising blood glucose. Here we develop a label-free and automatic imaging approach to visualize the islets in situ in diabetic rodents by the synchrotron radiation X-ray phase-contrast microtomography (SRµCT) at the ID17 station of the European Synchrotron Radiation Facility. The large-size images (3.2 mm × 15.97 mm) were acquired in the pancreas in STZ-treated mice and diabetic GK rats. Each pancreas was dissected by 3000 reconstructed images. The image datasets were further analysed by a self-developed deep learning method, AA-Net. All islets in the pancreas were segmented and visualized by the three-dimension (3D) reconstruction. After quantifying the volumes of the islets, we found that the number of larger islets (=>1500 µm3) was reduced by 2-fold (wt 1004 ± 94 vs GK 419 ± 122, P < 0.001) in chronically developed diabetic GK rat, while in STZ-treated diabetic mouse the large islets were decreased by half (189 ± 33 vs 90 ± 29, P < 0.001) compared to the untreated mice. Our study provides a label-free tool for detecting and quantifying pancreatic islets in situ. It implies the possibility of monitoring the state of pancreatic islets in vivo diabetes without labelling.

17.
iScience ; 26(12): 108416, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077141

RESUMO

Cocaine and amphetamine-regulated transcript (CART) is expressed in pancreatic islet cells and neuronal elements. We have previously established insulinotropic actions of CART in human and rodent islets. The receptor for CART in the pancreatic beta cells is unidentified. We used RNA sequencing of Cartpt knockdown (KD) INS-1 832/13 cells and identified GPR162 as the most Cartpt-regulated receptor. We therefore tested if GPR162 mediates the effects of CART in beta cells. Binding of CART to GPR162 was established using proximity ligation assay, radioactive binding, and co-immunoprecipitation, and KD of Gpr162 mRNA caused reduced binding. Gpr162 KD cells had blunted CARTp-induced exocytosis, and reduced CARTp-induced insulin secretion. Furthermore, we identified a hitherto undescribed GPR162-dependent role of CART as a regulator of cytoskeletal arrangement. Thus, our findings provide mechanistic insight into the effect of CART on insulin secretion and show that GPR162 is the CART receptor in beta cells.

18.
Biomedicines ; 10(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453520

RESUMO

Impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) are high-risk factors of diabetes development and may be caused by defective insulin secretion in pancreatic beta-cells. Glucose-stimulated insulin secretion is mediated by voltage-gated Ca2+ (CaV) channels in which the gamma-4 subunit (CaVγ4) is required for the beta-cell to maintain its differentiated state. We here aim to explore the involvement of CaVγ4 in controlling glucose homeostasis by employing the CaVγ4-/- mice to study in vivo glucose-metabolism-related phenotypes and glucose-stimulated insulin secretion, and to investigate the underlying mechanisms. We show that CaVγ4-/- mice exhibit perturbed glucose homeostasis, including IFG and IGT. Glucose-stimulated insulin secretion is blunted in CaVγ4-/- mouse islets. Remarkably, CaVγ4 deletion results in reduced expression of the transcription factor essential for beta-cell maturation, MafA, on both mRNA and protein levels in islets from human donors and CaVγ4-/- mice, as well as in INS-1 832/13 cells. Moreover, we prove that CaMKII is responsible for mediating this regulatory pathway linked between CaVγ4 and MafA, which is further confirmed by human islet RNA-seq data. We demonstrate that CaVγ4 is a key player in preserving normal blood glucose homeostasis, which sheds light on CaVγ4 as a novel target for the treatment of prediabetes through correcting the impaired metabolic status.

19.
Acta Physiol (Oxf) ; 234(2): e13761, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34978761

RESUMO

AIMS: Reduced expression of exocytotic genes is associated with functional defects in insulin exocytosis contributing to impaired insulin secretion and type 2 diabetes (T2D) development. MAFA and MAFB transcription factors regulate ß-cell physiology, and their gene expression is reduced in T2D ß cells. We investigate if loss of MAFA and MAFB in human ß cells contributes to T2D progression by regulating genes required for insulin exocytosis. METHODS: Three approaches were performed: (1) RNAseq analysis with the focus on exocytosis-related genes in MafA-/- mouse islets, (2) correlational analysis between MAFA, MAFB and exocytosis-related genes in human islets and (3) MAFA and MAFB silencing in human islets and EndoC-ßH1 cells followed by functional in vitro studies. RESULTS: The expression of 30 exocytosis-related genes was significantly downregulated in MafA-/- mouse islets. In human islets, the expression of 29 exocytosis-related genes correlated positively with MAFA and MAFB. Eight exocytosis-related genes were downregulated in MafA-/- mouse islets and positively correlated with MAFA and MAFB in human islets. From this analysis, the expression of RAB3A, STXBP1, UNC13A, VAMP2, NAPA, NSF, STX1A and SYT7 was quantified after acute MAFA or MAFB silencing in EndoC-ßH1 cells and human islets. MAFA and MAFB silencing resulted in impaired insulin secretion and reduced STX1A, SYT7 and STXBP1 (EndoC-ßH1) and STX1A (human islets) mRNA expression. STX1A and STXBP1 protein expression was also impaired in islets from T2D donors which lack MAFA expression. CONCLUSION: Our data indicate that STXBP1 and STX1A are important MAFA/B-regulated exocytosis genes which may contribute to insulin exocytosis defects observed in MAFA-deficient human T2D ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Exocitose , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/metabolismo , Camundongos
20.
Cell Calcium ; 108: 102669, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36347081

RESUMO

Voltage-gated Ca2+ (CaV) channel dysfunction leads to impaired glucose-stimulated insulin secretion in pancreatic ß-cells and contributes to the development of type-2 diabetes (T2D). The role of the low-voltage gated T-type CaV channels in ß-cells remains obscure. Here we have measured the global expression of T-type CaV3.2 channels in human islets and found that gene expression of CACNA1H, encoding CaV3.2, is negatively correlated with HbA1c in human donors, and positively correlated with islet insulin gene expression as well as secretion capacity in isolated human islets. Silencing or pharmacological blockade of CaV3.2 attenuates glucose-stimulated cytosolic Ca2+ signaling, membrane potential, and insulin release. Moreover, the endoplasmic reticulum (ER) Ca2+ store depletion is also impaired in CaV3.2-silenced ß-cells. The linkage between T-type (CaV3.2) and L-type CaV channels is further identified by the finding that the intracellular Ca2+ signaling conducted by CaV3.2 is highly dependent on the activation of L-type CaV channels. In addition, CACNA1H expression is significantly associated with the islet predominant L-type CACNA1C (CaV1.2) and CACNA1D (CaV1.3) genes in human pancreatic islets. In conclusion, our data suggest the essential functions of the T-type CaV3.2 subunit as a mediator of ß-cell Ca2+ signaling and membrane potential needed for insulin secretion, and in connection with L-type CaV channels.


Assuntos
Canais de Cálcio Tipo T , Secreção de Insulina , Células Secretoras de Insulina , Humanos , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA