Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proteins ; 82(2): 300-11, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23934913

RESUMO

The main function of lysosomal proteins is to degrade cellular macromolecules. We purified a novel lysosomal protein to homogeneity from bovine kidneys. By gene annotation, this protein is defined as a bovine phospholipase B-like protein 1 (bPLBD1) and, to better understand its biological function, we solved its structure at 1.9 Å resolution. We showed that bPLBD1 has uniform noncomplex-type N-glycosylation and that it localized to the lysosome. The first step in lysosomal protein transport, the initiation of mannose-6-phosphorylation by a N-acetylglucosamine-1-phosphotransferase, requires recognition of at least two distinct lysines on the protein surface. We identified candidate lysines by analyzing the structural and sequentially conserved N-glycosylation sites and lysines in bPLBD1 and in the homologous mouse PLBD2. Our model suggests that N408 is the primarily phosphorylated glycan, and K358 a key residue for N-acetylglucosamine-1-phosphotransferase recognition. Two other lysines, K334 and K342, provide the required second site for N-acetylglucosamine-1-phosphotransferase recognition. bPLBD1 is an N-terminal nucleophile (Ntn) hydrolase. By comparison with other Ntn-hydrolases, we conclude that the acyl moiety of PLBD1 substrate must be small to fit the putative binding pocket, whereas the space for the rest of the substrate is a large open cleft. Finally, as all the known substrates of Ntn-hydrolases have amide bonds, we suggest that bPLBD1 may be an amidase or peptidase instead of lipase, explaining the difficulty in finding a good substrate for any members of the PLBD family.


Assuntos
Amidoidrolases/química , Lisofosfolipase/química , Lisossomos/enzimologia , Amidoidrolases/isolamento & purificação , Amidoidrolases/metabolismo , Animais , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Células HeLa , Humanos , Ligação de Hidrogênio , Rim/enzimologia , Lisofosfolipase/isolamento & purificação , Lisofosfolipase/metabolismo , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Análise de Sequência de Proteína
2.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 11): 1479-87, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23090397

RESUMO

The structure of phosphoribosyl anthranilate isomerase (TrpF) from the hyperthermophilic archaeon Pyrococcus furiosus (PfTrpF) has been determined at 1.75 Å resolution. The PfTrpF structure has a monomeric TIM-barrel fold which differs from the dimeric structures of two other known thermophilic TrpF proteins. A comparison of the PfTrpF structure with the two known bacterial thermophilic TrpF structures and the structure of a related mesophilic protein from Escherichia coli (EcTrpF) is presented. The thermophilic TrpF structures contain a higher proportion of ion pairs and charged residues compared with the mesophilic EcTrpF. These residues contribute to the closure of the central barrel and the stabilization of the barrel and the surrounding α-helices. In the monomeric PfTrpF conserved structural water molecules are mostly absent; instead, the structural waters are replaced by direct side-chain-main-chain interactions. As a consequence of these combined mechanisms, the P. furiosus enzyme is a thermodynamically stable and entropically optimized monomeric TIM-barrel enzyme which defines a good framework for further protein engineering for industrial applications.


Assuntos
Aldose-Cetose Isomerases/química , Pyrococcus furiosus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Temperatura Alta , Íons/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Pyrococcus furiosus/química , Alinhamento de Sequência , Água/química
3.
Nat Commun ; 12(1): 5772, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599178

RESUMO

ISG15 is an interferon-stimulated, ubiquitin-like protein that can conjugate to substrate proteins (ISGylation) to counteract microbial infection, but the underlying mechanisms remain elusive. Here, we use a virus-like particle trapping technology to identify ISG15-binding proteins and discover Ring Finger Protein 213 (RNF213) as an ISG15 interactor and cellular sensor of ISGylated proteins. RNF213 is a poorly characterized, interferon-induced megaprotein that is frequently mutated in Moyamoya disease, a rare cerebrovascular disorder. We report that interferon induces ISGylation and oligomerization of RNF213 on lipid droplets, where it acts as a sensor for ISGylated proteins. We show that RNF213 has broad antimicrobial activity in vitro and in vivo, counteracting infection with Listeria monocytogenes, herpes simplex virus 1, human respiratory syncytial virus and coxsackievirus B3, and we observe a striking co-localization of RNF213 with intracellular bacteria. Together, our findings provide molecular insights into the ISGylation pathway and reveal RNF213 as a key antimicrobial effector.


Assuntos
Adenosina Trifosfatases/metabolismo , Anti-Infecciosos/metabolismo , Citocinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Células A549 , Animais , Enterovirus/fisiologia , Células HEK293 , Células HeLa , Herpesvirus Humano 1/fisiologia , Humanos , Interferon Tipo I/metabolismo , Gotículas Lipídicas/metabolismo , Listeria monocytogenes/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Ligação Proteica , Multimerização Proteica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Células THP-1 , Ubiquitina/metabolismo
4.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 62(Pt 12): 1185-90, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17142893

RESUMO

The crystal structure of L-lactate oxidase (LOX) from Aerococcus viridans has been determined at 2.1 A resolution. LOX catalyzes the flavin mononucleotide (FMN) dependent oxidation of lactate to pyruvate and hydrogen peroxide. LOX belongs to the alpha-hydroxy-acid oxidase flavoenzyme family; members of which bind similar substrates and to some extent have conserved catalytic properties and structural motifs. LOX crystallized as two tightly packed tetramers in the asymmetric unit, each having fourfold symmetry. The present structure shows a conserved FMN coordination, but also reveals novel residues involved in substrate binding compared with other family members.


Assuntos
Oxigenases de Função Mista/química , Streptococcaceae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Mononucleotídeo de Flavina/química , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Alinhamento de Sequência
5.
ChemMedChem ; 7(11): 1943-53, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22969039

RESUMO

Acid α-glucosidase (GAA) is a lysosomal enzyme and a pharmacological target for Pompe disease, an inherited lysosomal storage disorder (LSD). An emerging treatment for LSDs is the use of pharmacological chaperones, small molecules that enhance total cellular activity of the target lysosomal protein. We have systematically studied thirteen inhibitors, which provide good lead compounds for the development of GAA chaperones. We have verified binding on GAA at low and neutral pH, mapping the range of pH during transport to lysosomes. These ligands inhibit GAA competitively and reversibly, and a few of the compounds show higher molecular stabilisation capacity than would be expected from their binding affinity. These molecules also increase lysosomal localisation of GAA variants in cells. In order to understand the specific molecular mechanism of the interactions, we docked the compounds to a homology model of the human GAA. Three factors contribute to the tightness of binding. Firstly, well-positioned hydroxy groups are essential to orient the ligand and make the binding specific. Secondly, the open nature of the GAA active site allows both large and small ligands to bind. The third and most important binding determinant is the positive charge on the ligand, which is neutralised by Asp 518 or Asp 616 on GAA. Our study creates a firm basis for the design of drugs to treat Pompe disease, as it provides a comparable study of the ligand properties. Our analysis suggests a useful drug design framework for specific pharmacological chaperones for human GAA.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/enzimologia , alfa-Glucosidases/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Lisossomos/metabolismo , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , alfa-Glucosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA