Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Plant Cell ; 36(5): 1963-1984, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271284

RESUMO

Photoperiod is a crucial environmental cue for phenological responses, including growth cessation and winter dormancy in perennial woody plants. Two regulatory modules within the photoperiod pathway explain bud dormancy induction in poplar (Populus spp.): the circadian oscillator LATE ELONGATED HYPOCOTYL 2 (LHY2) and GIGANTEA-like genes (GIs) both regulate the key target for winter dormancy induction FLOWERING LOCUS T2 (FT2). However, modification of LHY2 and GIs cannot completely prevent growth cessation and bud set under short-day (SD) conditions, indicating that additional regulatory modules are likely involved. We identified PtoHY5a, an orthologs of the photomorphogenesis regulatory factor ELONGATED HYPOCOTYL 5 (HY5) in poplar (Populus tomentosa), that directly activates PtoFT2 expression and represses the circadian oscillation of LHY2, indirectly activating PtoFT2 expression. Thus, PtoHY5a suppresses SD-induced growth cessation and bud set. Accordingly, PtoHY5a knockout facilitates dormancy induction. PtoHY5a also inhibits bud-break in poplar by controlling gibberellic acid (GA) levels in apical buds. Additionally, PtoHY5a regulates the photoperiodic control of seasonal growth downstream of phytochrome PHYB2. Thus, PtoHY5a modulates seasonal growth in poplar by regulating the PtoPHYB2-PtoHY5a-PtoFT2 module to determine the onset of winter dormancy, and by fine-tuning GA levels to control bud-break.


Assuntos
Regulação da Expressão Gênica de Plantas , Giberelinas , Fotoperíodo , Dormência de Plantas , Proteínas de Plantas , Populus , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Populus/fisiologia , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dormência de Plantas/genética , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento
2.
Plant Cell Environ ; 47(2): 408-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37927244

RESUMO

Establishing the temperature dependence of respiration is critical for accurate predictions of the global carbon cycle under climate change. Diurnal temperature fluctuations, or changes in substrate availability, lead to variations in leaf respiration. Additionally, recent studies hint that the thermal sensitivity of respiration could be time-dependent. However, the role for endogenous processes, independent from substrate availability, as drivers of temporal changes in the sensitivity of respiration to temperature across phylogenies has not yet been addressed. Here, we examined the diurnal variation in the response of respiration to temperatures (R-T relationship) for different lycophyte, fern, gymnosperm and angiosperm species. We tested whether time-dependent changes in the R-T relationship would impact leaf level respiration modelling. We hypothesized that interactions between endogenous processes, like the circadian clock, and leaf respiration would be independent from changes in substrate availability. Overall, we observed a time-dependent sensitivity in the R-T relationship across phylogenies, independent of temperature, that affected modelling parameters. These results are compatible with circadian gating of respiration, but further studies should analyse the possible involvement of the clock. Our results indicate time-dependent regulation of respiration might be widespread across phylogenies, and that endogenous regulation of respiration is likely affecting leaf-level respiration fluxes.


Assuntos
Aclimatação , Respiração Celular , Respiração Celular/fisiologia , Aclimatação/fisiologia , Plantas , Temperatura , Respiração , Folhas de Planta/fisiologia
3.
New Phytol ; 238(3): 952-970, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36694296

RESUMO

Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future.


Assuntos
Incêndios , Incêndios Florestais , Plantas , Fenômenos Fisiológicos Vegetais , Água , Carbono , Ecossistema
4.
Plant Cell Environ ; 46(9): 2763-2777, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306365

RESUMO

Adaptation to future climates characterized by more frequent severe droughts requires enhanced mechanistic understanding of tree mortality. However, our knowledge of the physiological limits to withstand extreme drought, and how the coordination between water and carbon traits enhances survival, is still limited. Potted seedlings of Pinus massoniana were dehydrated to three target droughts (percentage loss of stem hydraulic conductivity of ca. 50%, 85%, and 100%; PLC50 , PLC85 and PLC100 ) and then relieved from these target droughts by fully rewatering. Predawn and midday water potentials (Ψ), relative water content (RWC), PLC and nonstructural carbohydrates (NSC) were monitored. During drought, Ψ and RWC declined as PLC increased. Root RWC declined more rapidly than other organ RWCs, particularly after PLC50 stress. All organ NSC concentrations were above predrought values. During rewatering, water trait recovery declined as drought increased, with no mortality at PLC50 but 75% mortality at PLC85 . The observed stem hydraulic recovery at PLC50 following rewatering was not correlated to NSC dynamics. Collectively, our results highlighted the primary role of hydraulic failure in Pinus massoniana seedling mortality by assessing mortality threshold and links among water status and water supply. Root RWC can be considered as a potential warning signal of P. massoniana mortality.


Assuntos
Pinus , Traqueófitas , Água , Secas , Carboidratos/química , Plântula/fisiologia , Pinus/fisiologia , Árvores/fisiologia
5.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982804

RESUMO

Salinity stress severely hampers plant growth and productivity. How to improve plants' salt tolerance is an urgent issue. However, the molecular basis of plant resistance to salinity still remains unclear. In this study, we used two poplar species with different salt sensitivities to conduct RNA-sequencing and physiological and pharmacological analyses; the aim is to study the transcriptional profiles and ionic transport characteristics in the roots of the two Populus subjected to salt stress under hydroponic culture conditions. Our results show that numerous genes related to energy metabolism were highly expressed in Populus alba relative to Populus russkii, which activates vigorous metabolic processes and energy reserves for initiating a set of defense responses when suffering from salinity stress. Moreover, we found the capacity of Na+ transportation by the P. alba high-affinity K+ transporter1;2 (HKT1;2) was superior to that of P. russkii under salt stress, which enables P. alba to efficiently recycle xylem-loaded Na+ and to maintain shoot K+/Na+ homeostasis. Furthermore, the genes involved in the synthesis of ethylene and abscisic acid were up-regulated in P. alba but downregulated in P. russkii under salt stress. In P. alba, the gibberellin inactivation and auxin signaling genes with steady high transcriptions, several antioxidant enzymes activities (such as peroxidase [POD], ascorbate peroxidase [APX], and glutathione reductase [GR]), and glycine-betaine content were significantly increased under salt stress. These factors altogether confer P. alba a higher resistance to salinity, achieving a more efficient coordination between growth modulation and defense response. Our research provides significant evidence to improve the salt tolerance of crops or woody plants.


Assuntos
Populus , Tolerância ao Sal , Tolerância ao Sal/genética , Transcriptoma , Árvores/genética , Estresse Fisiológico/genética , Populus/metabolismo , Sódio/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plant Cell Environ ; 45(4): 1187-1203, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34985807

RESUMO

Drought-induced tree mortality may increase with ongoing climate change. Unraveling the links between stem hydraulics and mortality thresholds, and the effects of intraspecific variation, remain important unresolved issues. We conducted a water manipulation experiment in a rain-out shelter, using four provenances of Schima superba originating from a gradient of annual precipitation (1124-1796 mm) and temperature (16.4-22.4°C). Seedlings were droughted to three levels of percentage loss of hydraulic conductivity (i.e., P50 , P88  and P99) and subsequently rewatered to field capacity for 30 days; traits related to water and carbon relations were measured. The lethal water potential associated with incipient mortality was between P50 and P88 . Seedlings exhibited similar drought responses in xylem water potential, hydraulic conductivity and gas exchange. Upon rehydration, patterns of gas exchange differed among provenances but were not related to the climate at the origin. The four provenances exhibited a similar degree of stem hydraulic recovery, which was correlated with the magnitude of antecedent drought and stem soluble sugar at the end of the drought. Results suggest that there were intraspecific differences in the capacity of S. superba seedlings for carbon assimilation during recovery, indicating a decoupling between gas exchange recovery and stem hydraulics across provenances.


Assuntos
Secas , Árvores , Carbono , Folhas de Planta/fisiologia , Plântula , Árvores/fisiologia , Água/fisiologia , Xilema/fisiologia
7.
Ann Bot ; 130(4): 509-523, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797146

RESUMO

BACKGROUND AND AIMS: Understanding the genetic basis of adaptation and plasticity in trees constitutes a knowledge gap. We linked dendrochronology and genomics [single nucleotide polymorphisms (SNPs)] for a widespread conifer (Pinus halepensis Mill.) to characterize intraspecific growth differences elicited by climate. METHODS: The analysis comprised 20-year tree-ring series of 130 trees structured in 23 populations evaluated in a common garden. We tested for genotype by environment interactions (G × E) of indexed ring width (RWI) and early- to latewood ratios (ELI) using factorial regression, which describes G × E as differential gene sensitivity to climate. KEY RESULTS: The species' annual growth was positively influenced by winter temperature and spring moisture and negatively influenced by previous autumn precipitation and warm springs. Four and five climate factors explained 10 % (RWI) and 16 % (ELI) of population-specific interannual variability, respectively, with populations from drought-prone areas and with uneven precipitation experiencing larger growth reductions during dry vegetative periods. Furthermore, four and two SNPs explained 14 % (RWI) and 10 % (ELI) of interannual variability among trees, respectively. Two SNPs played a putative role in adaptation to climate: one identified from transcriptome sequencing of P. halepensis and another involved in response regulation to environmental stressors. CONCLUSIONS: We highlight how tree-ring phenotypes, obtained from a common garden experiment, combined with a candidate-gene approach allow the quantification of genetic and environmental effects determining adaptation for a conifer with a large and complex genome.


Assuntos
Pinus , Árvores , Clima , Secas , Interação Gene-Ambiente , Fenótipo , Pinus/fisiologia
8.
Physiol Plant ; 174(4): e13751, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36004736

RESUMO

Finding the adequate balance between wood formation and abiotic stress resistance is still an important challenge for industrial woody crops. In this study, PeNAC122, a member of the NAC transcription factor (TF) family highly expressed in xylem, was cloned from Populus euphratica. Tissue expression and ß-glucuronidase (GUS) staining showed that PeNAC122 was exclusively expressed in phloem fiber and secondary xylem of stems. Subcellular and yeast transactivation assays confirmed that PeNAC122 protein existed in the nucleus and did not have transcriptional activation and inhibitory activity. Overexpression of PeNAC122 poplar lines exhibited reduced plant height, thickened xylem, and accumulated lignin content in stems, and also upregulates the expression of secondary cell wall biosynthetic genes. Moreover, overexpression of PeNAC122 lines displayed more tolerance to PEG6000-induced osmotic stress, with stronger photosynthetic performance, higher antioxidant enzyme activity, and less accumulation of reactive oxygen species in leaves, and higher expression levels of stress response genes DREB2A, RD29, and NCED3. These results indicate that PeNAC122 plays a crucial role in wood formation and abiotic stress tolerance, which, in addition to potential use in improving wood quality, provides further insight into the role of NAC family TFs in balancing wood development and abiotic stress resistance.


Assuntos
Populus , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Pressão Osmótica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Madeira/genética , Madeira/metabolismo , Xilema/genética
9.
New Phytol ; 229(1): 245-258, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893885

RESUMO

Progress in high-throughput phenotyping and genomics provides the potential to understand the genetic basis of plant functional differentiation. We developed a semi-automatic methodology based on unmanned aerial vehicle (UAV) imagery for deriving tree-level phenotypes followed by genome-wide association study (GWAS). An RGB-based point cloud was used for tree crown identification in a common garden of Pinus halepensis in Spain. Crowns were combined with multispectral and thermal orthomosaics to retrieve growth traits, vegetation indices and canopy temperature. Thereafter, GWAS was performed to analyse the association between phenotypes and genomic variation at 235 single nucleotide polymorphisms (SNPs). Growth traits were associated with 12 SNPs involved in cellulose and carbohydrate metabolism. Indices related to transpiration and leaf water content were associated with six SNPs involved in stomata dynamics. Indices related to leaf pigments and leaf area were associated with 11 SNPs involved in signalling and peroxisome metabolism. About 16-20% of trait variance was explained by combinations of several SNPs, indicating polygenic control of morpho-physiological traits. Despite a limited availability of markers and individuals, this study is provides a successful proof-of-concept for the combination of high-throughput UAV-based phenotyping with cost-effective genotyping to disentangle the genetic architecture of phenotypic variation in a widespread conifer.


Assuntos
Estudo de Associação Genômica Ampla , Pinus , Genótipo , Fenótipo , Pinus/genética , Espanha
10.
New Phytol ; 229(4): 2020-2034, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33037633

RESUMO

Nighttime stomatal conductance (gsn ) varies among plant functional types and species, but factors shaping the evolution of gsn remain unclear. Examinations of intraspecific variation in gsn as a function of climate and co-varying leaf traits may provide new insight into the evolution of gsn and its adaptive significance. We grew 11 genotypes of Panicum virgatum (switchgrass) representing differing home-climates in a common garden experiment and measured nighttime and daytime leaf gas exchange, as well as stomatal density (SD) and size during early-, mid-, and late-summer. We used piecewise structural equation modelling to determine direct and indirect relationships between home-climate, gas exchange, and stomatal traits. We found no direct relationship between home-climate and gsn . However, genotypes from hotter climates possessed higher SD, which resulted in higher gsn . Across genotypes, higher gsn was associated with higher daytime stomatal conductance and net photosynthesis. Our results indicate that higher gsn may arise in genotypes from hotter climates via increased SD. High SD may provide benefits to genotypes from hotter climates through enhanced daytime transpirational cooling or by permitting maximal gas exchange when conditions are suitable. These results highlight the role of climate and trait coordination in shaping genetic differentiation in gsn .


Assuntos
Panicum , Estômatos de Plantas , Clima , Fotossíntese , Folhas de Planta
11.
Plant Cell Environ ; 44(11): 3471-3489, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34453442

RESUMO

Record-breaking fire seasons in many regions across the globe raise important questions about plant community responses to shifting fire regimes (i.e., changing fire frequency, severity and seasonality). Here, we examine the impacts of climate-driven shifts in fire regimes on vegetation communities, and likely responses to fire coinciding with severe drought, heatwaves and/or insect outbreaks. We present scenario-based conceptual models on how overlapping disturbance events and shifting fire regimes interact differently to limit post-fire resprouting and recruitment capacity. We demonstrate that, although many communities will remain resilient to changing fire regimes in the short-term, longer-term changes to vegetation structure, demography and species composition are likely, with a range of subsequent effects on ecosystem function. Resprouting species are likely to be most resilient to changing fire regimes. However, even these species are susceptible if exposed to repeated short-interval fire in combination with other stressors. Post-fire recruitment is highly vulnerable to increased fire frequency, particularly as climatic limitations on propagule availability intensify. Prediction of community responses to fire under climate change will be greatly improved by addressing knowledge gaps on how overlapping disturbances and climate change-induced shifts in fire regime affect post-fire resprouting, recruitment, growth rates, and species-level adaptation capacity.


Assuntos
Mudança Climática , Ecossistema , Incêndios , Fenômenos Fisiológicos Vegetais
12.
Ecotoxicol Environ Saf ; 225: 112801, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560614

RESUMO

Soil salinity is a widespread stress in semi-arid forests worldwide, but how to manage nitrogen (N) nutrition to improve plant saline tolerance remains unclear. Here, the cuttings of a widely distributed poplar from central Asia, Populus russikki Jabl., were exposed to either normal or low nitrogen (LN) concentrations for two weeks in semi-controlled greenhouse, and then they were added with moderate salt solution or not for another two weeks to evaluate their physiological, biochemical, metabolites and transcriptomic profile changes. LN-pretreating alleviated the toxicity caused by the subsequent salt stress in the poplar plants, demonstrated by a significant reduction in the influx of Na+ and Cl- and improvement of the K+/Na+ ratio. The other salt-stressed traits were also ameliarated, indicated by the variations of chlorophyll content, PSII photochemical activity and lipid peroxidation. Stress alleviation resulted from two different processes. First, LN pretreatment caused a significant increase of non-structural carbohydrates (NSC), allowed for an increased production of osmolytes and a higher potential fueling ion transport under subsequent salt condition, along with increased transcript levels of the cation/H+ ATPase. Second, LN pretreatment enhanced the transcript levels of stress signaling components and phytohormones pathway as well as antioxidant enzyme activities. The results indicate that early restrictions of N supply could enhance posterior survival under saline stress in poplar plants, which is important for plantation programs and restoration activities in semi-arid areas.


Assuntos
Populus , Carboidratos , Nitrogênio , Populus/genética , Estresse Salino , Tolerância ao Sal
13.
Plant Cell Environ ; 43(1): 28-39, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677177

RESUMO

Vapour pressure deficit is a major driver of seasonal changes in transpiration, but photoperiod also modulates leaf responses. Climate warming might enhance transpiration by increasing atmospheric water demand and the length of the growing season, but photoperiod-sensitive species could show dampened responses. Here, we document that day length is a significant driver of the seasonal variation in stomatal conductance. We performed weekly gas exchange measurements across a common garden experiment with 12 oak species from contrasting geographical origins, and we observed that the influence of day length was of similar strength to that of vapour pressure deficit in driving the seasonal pattern. We then examined the generality of our findings by incorporating day-length regulation into well-known stomatal models. For both angiosperm and gymnosperm species, the models improved significantly when adding day-length dependences. Photoperiod control over stomatal conductance could play a large yet underexplored role on the plant and ecosystem water balances.


Assuntos
Estômatos de Plantas/fisiologia , Quercus/fisiologia , Estações do Ano , Cycadopsida/fisiologia , Magnoliopsida/fisiologia , Fotoperíodo , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Pressão de Vapor
14.
Plant Cell Environ ; 43(8): 1944-1957, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394490

RESUMO

Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non-structural carbohydrate reserves (NSC), but hydraulic limitations could also be important. We conducted a multifactorial experiment with two levels of light (ambient, 2-3% of ambient) and three levels of water stress (0, 50 and 80 percent losses of hydraulic conductivity, PLC) on two Mediterranean oaks (Quercus ilex and Q. faginea) under a rain-out shelter (n = 360). The proportion of resprouting individuals after canopy clipping declined markedly as PLC increased for both species. NSC concentrations affected the response of Q. ilex, the species with higher leaf construction costs, and its effect depended on the PLC. The growth of resprouting individuals was largely dependent on photosynthetic rates for both species, while stored NSC availability and hydraulic limitations played minor and non-significant roles, respectively. Contrary to conventional wisdom, our results indicate that resprouting in oaks may be primarily driven by complex interactions between hydraulics and carbon sources, whereas stored NSC play a significant but secondary role.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Raízes de Plantas/metabolismo , Quercus/fisiologia , Desidratação , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Quercus/crescimento & desenvolvimento , Espanha
15.
New Phytol ; 223(4): 1696-1706, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31055839

RESUMO

Nocturnal stomatal conductance contributes to water loss at night without carbon gain in C3 or C4 plants because photosynthesis does not occur in the dark. The functional relevance of nocturnal conductance thus remains an unresolved conundrum. Here, we review and re-analyse previously published datasets on nocturnal conductance (gn ) globally (176 species) to synthesize our current understanding on its potential biological function and to identify remaining research gaps. We found that gn was positively correlated with relative growth rate, which is compatible with the postulate that circadian-driven nocturnal conductance enhances predawn stomatal conductance, thereby priming stomata for photosynthesis in early daylight. The variation in gn across plant species and functional types was not consistent with the hypotheses that the main function of gn is to: remove excess CO2, which might limit growth; enhance oxygen delivery to the functional sapwood; enhance nutrient supply; or that gn is due to stomatal leakiness. We suggest further study regarding the potential of gn to be an important functional and ecological trait influencing competitive outcomes and we outline a research programme to achieve that objective.


Assuntos
Carbono/metabolismo , Escuridão , Estômatos de Plantas/fisiologia , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Desenvolvimento Vegetal
16.
Proc Natl Acad Sci U S A ; 113(3): 662-7, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729860

RESUMO

Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.


Assuntos
Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Modelos Lineares , Sibéria , Espanha , Especificidade da Espécie , Fatores de Tempo
17.
Ecol Lett ; 21(7): 968-977, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29687543

RESUMO

Stomatal response to environmental conditions forms the backbone of all ecosystem and carbon cycle models, but is largely based on empirical relationships. Evolutionary theories of stomatal behaviour are critical for guarding against prediction errors of empirical models under future climates. Longstanding theory holds that stomata maximise fitness by acting to maintain constant marginal water use efficiency over a given time horizon, but a recent evolutionary theory proposes that stomata instead maximise carbon gain minus carbon costs/risk of hydraulic damage. Using data from 34 species that span global forest biomes, we find that the recent carbon-maximisation optimisation theory is widely supported, revealing that the evolution of stomatal regulation has not been primarily driven by attainment of constant marginal water use efficiency. Optimal control of stomata to manage hydraulic risk is likely to have significant consequences for ecosystem fluxes during drought, which is critical given projected intensification of the global hydrological cycle.


Assuntos
Secas , Estômatos de Plantas , Ecossistema , Estômatos de Plantas/fisiologia , Água , Ciclo Hidrológico
19.
Glob Chang Biol ; 24(6): 2366-2376, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316074

RESUMO

Rising atmospheric [CO2 ] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, although rising [CO2 ] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO2 interactions. We use repeat near-surface digital photography to quantify the effects of water availability and experimentally manipulated elevated [CO2 ] (eCO2 ) on understorey live foliage cover and biomass over three growing seasons in a temperate grassy woodland in south-eastern Australia. We hypothesised that (i) understorey herbaceous productivity is dependent upon soil water availability, and (ii) that eCO2 will increase productivity, with greatest stimulation occurring under conditions of low water availability. Soil volumetric water content (VWC) determined foliage cover and growth rates over the length of the growing season (August to March), with low VWC (<0.1 m3  m-3 ) reducing productivity. However, eCO2 did not increase herbaceous cover and biomass over the duration of the experiment, or mitigate the effects of low water availability on understorey growth rates and cover. Our findings suggest that projected increases in aridity in temperate woodlands are likely to lead to reduced understorey productivity, with little scope for eCO2 to offset these changes.


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/farmacologia , Mudança Climática , Florestas , Plantas/efeitos dos fármacos , Solo/química , Biomassa , Estações do Ano , Água/química , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA