Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 93(12): 5177-5184, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33730483

RESUMO

Enzyme-linked immunosorbent assays (ELISAs) are used extensively for the detection and quantification of biomolecules in clinical diagnostics as well as in basic research. Although broadly used, the inherent complexities of ELISAs preclude their utility for straightforward point-of-need testing, where speed and simplicity are essential. With this in mind, we developed a bioluminescence-based immunoassay format that provides a sensitive and simple method for detecting biomolecules in clinical samples. We utilized a ternary, split-NanoLuc luciferase complementation reporter consisting of two small peptides (11mer, 13mer) and a 17 kDa polypeptide combined with a luminogenic substrate to create a complete, shelf-stable add-and-read assay detection reagent. Directed evolution was used to optimize reporter constituent sequences to impart chemical and thermal stability, as well as solubility, while formulation optimization was applied to stabilize an all-in-one reagent that can be reconstituted in aqueous buffers or sample matrices. The result of these efforts is a robust, first-generation bioluminescence-based homogenous immunoassay reporter platform where all assay components can be configured into a stable lyophilized cake, supporting homogeneous, rapid, and sensitive one-step biomolecule quantification in complex human samples. This technology represents a promising alternative immunoassay format with significant potential to bring critical diagnostic molecular detection testing closer to the point-of-need.


Assuntos
Testes Imunológicos , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoensaio , Indicadores e Reagentes , Luciferases/genética
2.
Biochemistry ; 59(34): 3148-3156, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544330

RESUMO

Glycosylation is a common modification that can endow proteins with altered physical and biological properties. Ribonuclease 1 (RNase 1), which is the human homologue of the archetypal enzyme RNase A, undergoes N-linked glycosylation at asparagine residues 34, 76, and 88. We have produced the three individual glycoforms that display the core heptasaccharide, Man5GlcNAc2, and analyzed the structure of each glycoform by using small-angle X-ray scattering along with molecular dynamics simulations. The glycan on Asn34 is relatively compact and rigid, donates hydrogen bonds that "cap" the carbonyl groups at the C-terminus of an α-helix, and enhances protein thermostability. In contrast, the glycan on Asn88 is flexible and can even enter the enzymic active site, hindering catalysis. The N-glycosylation of Asn76 has less pronounced consequences. These data highlight the diverse behaviors of Man5GlcNAc2 pendants and provide a structural underpinning to the functional consequences of protein glycosylation.


Assuntos
Nitrogênio/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo , Domínio Catalítico , Glicosilação , Humanos , Modelos Moleculares
3.
RNA ; 24(8): 1018-1027, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29748193

RESUMO

Angiogenin (ANG) is a secretory ribonuclease that promotes the proliferation of endothelial cells, leading to angiogenesis. This function relies on its ribonucleolytic activity, which is low for simple RNA substrates. Upon entry into the cytosol, ANG is sequestered by the ribonuclease inhibitor protein (RNH1). We find that ANG is a potent cytotoxin for RNH1-knockout HeLa cells, belying its inefficiency as a nonspecific catalyst. The toxicity does, however, rely on the ribonucleolytic activity of ANG and a cytosolic localization, which lead to the accumulation of particular tRNA fragments (tRFs), such as tRF-5 Gly-GCC. These up-regulated tRFs are highly cytotoxic at physiological concentrations. Although ANG is well-known for its promotion of cell growth, our results reveal that ANG can also cause cell death.


Assuntos
Proteínas de Transporte/metabolismo , Morte Celular/fisiologia , Citotoxinas/metabolismo , RNA de Transferência/genética , Ribonuclease Pancreático/metabolismo , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Morte Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Citotoxinas/genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , MicroRNAs/genética , Estresse Oxidativo , Ligação Proteica/genética , Ribonuclease Pancreático/genética
4.
Biochemistry ; 58(7): 987-996, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30633504

RESUMO

Ribonuclease 1 (RNase 1) is the most prevalent human homologue of the archetypal enzyme RNase A. RNase 1 contains sequons for N-linked glycosylation at Asn34, Asn76, and Asn88 and is N-glycosylated at all three sites in vivo. The effect of N-glycosylation on the structure and function of RNase 1 is unknown. By using an engineered strain of the yeast Pichia pastoris, we installed a heptasaccharide (Man5GlcNAc2) on the side chain of Asn34, Asn76, and Asn88 to produce the authentic triglycosylated form of human RNase 1. As a glutamine residue is not a substrate for cellular oligosaccharyltransferase, we used strategic asparagine-to-glutamine substitutions to produce the three diglycosylated and three monoglycosylated forms of RNase 1. We found that the N-glycosylation of RNase 1 at any position attenuates its catalytic activity but enhances both its thermostability and its resistance to proteolysis. N-Glycosylation at Asn34 generates the most active and stable glycoforms, in accord with its sequon being highly conserved among vertebrate species. These data provide new insight on the biological role of the N-glycosylation of a human secretory enzyme.


Assuntos
Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Asparagina/metabolismo , Estabilidade Enzimática , Glicosilação , Humanos , Pichia/genética , Desnaturação Proteica , RNA de Cadeia Dupla/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Front Microbiol ; 13: 970233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386626

RESUMO

Point-of-care tests are highly valuable in providing fast results for medical decisions for greater flexibility in patient care. Many diagnostic tests, such as ELISAs, that are commonly used within clinical laboratory settings require trained technicians, laborious workflows, and complex instrumentation hindering their translation into point-of-care applications. Herein, we demonstrate the use of a homogeneous, bioluminescent-based, split reporter platform that enables a simple, sensitive, and rapid method for analyte detection in clinical samples. We developed this point-of-care application using an optimized ternary, split-NanoLuc luciferase reporter system that consists of two small reporter peptides added as appendages to analyte-specific affinity reagents. A bright, stable bioluminescent signal is generated as the affinity reagents bind to the analyte, allowing for proximity-induced complementation between the two reporter peptides and the polypeptide protein, in addition to the furimazine substrate. Through lyophilization of the stabilized reporter system with the formulated substrate, we demonstrate a shelf-stable, all-in-one, add-and-read analyte-detection system for use in complex sample matrices at the point-of-care. We highlight the modularity of this platform using two distinct SARS-CoV-2 model systems: SARS-CoV-2 N-antigen detection for active infections and anti-SARS-CoV-2 antibodies for immunity status detection using chemically conjugated or genetically fused affinity reagents, respectively. This technology provides a simple and standardized method to develop rapid, robust, and sensitive analyte-detection assays with flexible assay formatting making this an ideal platform for research, clinical laboratory, as well as point-of-care applications utilizing a simple handheld luminometer.

6.
ACS Chem Biol ; 17(8): 2179-2187, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35862857

RESUMO

Sensitive and selective detection assays are essential for the accurate measurement of analytes in both clinical and research laboratories. Immunoassays that rely on nonoverlapping antibodies directed against the same target analyte (e.g., sandwich enzyme-linked immunosorbent assays (ELISAs)) are commonly used molecular detection technologies. Use of split enzyme reporters has simplified the workflow for these traditionally complex assays. However, identifying functional antibody pairs for a given target analyte can be cumbersome, as it generally involves generating and screening panels of antibodies conjugated to reporters. Accordingly, we sought a faster and easier reporter conjugation strategy to streamline antibody screening. We describe here the development of such a method that is based on an optimized ternary NanoLuc luciferase. This bioluminescence complementation system is comprised of a reagent-based thermally stable polypeptide (LgTrip) and two small peptide tags (ß9 and ß10) with lysine-reactive handles for direct conjugation onto antibodies. These reagents enable fast, single-step, wash-free antibody labeling and sensitive functional screening. Simplicity, speed, and utility of the one-pot labeling technology are demonstrated in screening antibody pairs for the analyte interleukin-4. The screen resulted in the rapid development of a sensitive homogeneous immunoassay for this clinically relevant cytokine.


Assuntos
Anticorpos , Peptídeos , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio/métodos , Indicadores e Reagentes , Luciferases
7.
ACS Chem Biol ; 14(4): 599-602, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30830748

RESUMO

A major hurdle in chemical biology is the delivery of native proteins into the cytosol of mammalian cells. Herein, we report that esterification of the carboxyl groups of an enzyme with a diazo compound enables not only its passage into the cytosol but also the retention of its catalytic activity there. This scenario is demonstrated with human ribonuclease 1, which manifests ribonucleolytic activity that can be cytotoxic. After internalization, the nascent esters are hydrolyzed in situ by endogenous esterases, making the process traceless. This strategy provides unprecedented opportunities for the delivery of functional enzymes into human cells.


Assuntos
Esterases/administração & dosagem , Ribonucleases/administração & dosagem , Biocatálise , Esterases/metabolismo , Esterificação , Humanos , Proteólise , Ribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA