Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 638: 52-57, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29258861

RESUMO

This study investigated geographic variability in the venom of Centruroides sculpturatus scorpions from different biotopes. Venom from scorpions collected from two different regions in Arizona; Santa Rita Foothills (SR) and Yarnell (Yar) were analyzed. We found differences between venoms, mainly in the two most abundant peptides; SR (CsEv2e and CsEv1f) and Yar (CsEv2 and CsEv1c) identified as natural variants of CsEv1 and CsEv2. Sequence analyses of these peptides revealed conservative amino acid changes between variants, which may underlie biological activity against arthropods. A third peptide (CsEv6) was highly abundant in the Yar venom compared to the SR venom. CsEv6 is a 67 amino acid peptide with 8 cysteines. CsEv6 did not exhibit toxicity to the three animal models tested. However, both venoms shared similarities in peptides that are predicted to deter predators. For example, both venoms expressed CsEI (lethal to chick) in similar abundance, while CsEd and CsEM1a (toxic to mammals) displayed only moderate variation in their abundance. Electrophysiological evaluation of CsEd and CsEM1a showed that both toxins act on the human sodium-channel subtype 1.6 (hNav 1.6). Complete sequencing revealed that both toxins are structurally similar to beta-toxins isolated from different Centruroides species that also target hNav 1.6.


Assuntos
Proteínas de Artrópodes , Variação Genética , Venenos de Escorpião , Escorpiões , Animais , Arizona , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/toxicidade , Células CHO , Galinhas , Cricetulus , Gryllidae , Células HEK293 , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Venenos de Escorpião/química , Venenos de Escorpião/genética , Venenos de Escorpião/toxicidade , Escorpiões/química , Escorpiões/genética , Análise de Sequência de Proteína
2.
Mol Pharmacol ; 86(1): 28-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24723491

RESUMO

This communication reports the structural and functional characterization of urotoxin, the first K(+) channel toxin isolated from the venom of the Australian scorpion Urodacus yaschenkoi. It is a basic peptide consisting of 37 amino acids with an amidated C-terminal residue. Urotoxin contains eight cysteines forming four disulfide bridges with sequence similarities resembling the α-potassium channel toxin 6 (α-KTx-6) subfamily of peptides; it was assigned the systematic number of α-KTx-6.21. Urotoxin is a potent blocker of human voltage-gated potassium channel (Kv)1.2 channels, with an IC50 of 160 pM, whereas its affinity for other channels tested was in the nanomolar range (hKv1.1, IC50 = 253 nM; hKv1.3, IC50 = 91 nM; and hKCa3.1, IC50 = 70 nM). The toxin had no effect on hKv1.4, hKv1.5, human ether-à-go-go-related gene type 1 (hERG1), or human ether-à-go-go-like (hELK2) channels. Multiple sequence alignments from the venom gland transcriptome showed the existence of four other new peptides similar to urotoxin. Computer modeling of urotoxin's three-dimensional structure suggests the presence of the α/ß-scaffold characteristic of other scorpion toxins, although very likely forming an uncommon disulfide pairing pattern. Using molecular dynamics, a model for the binding of this peptide to human Kv1.2 and hKv1.1 channels is presented, along with the binding of an in silico mutant urotoxin (Lys25Ala) to both channels. Urotoxin enriches our knowledge of K(+) channel toxins and, due to its high affinity for hKv1.2 channels, it may be a good candidate for the development of pharmacologic tools to study the physiologic functions of K(+) channels or related channelopathies and for restoring axonal conduction in demyelinated axons.


Assuntos
Bloqueadores dos Canais de Potássio/química , Venenos de Escorpião/química , Escorpiões/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Células COS , Linhagem Celular , Chlorocebus aethiops , Cricetulus , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peso Molecular , Alinhamento de Sequência
3.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535792

RESUMO

Five peptides were isolated from the venom of the Mexican scorpion Centruroides bonito by chromatographic procedures (molecular weight sieving, ion exchange columns, and HPLC) and were denoted Cbo1 to Cbo5. The first four peptides contain 66 amino acid residues and the last one contains 65 amino acids, stabilized by four disulfide bonds, with a molecular weight spanning from about 7.5 to 7.8 kDa. Four of them are toxic to mice, and their function on human Na+ channels expressed in HEK and CHO cells was verified. One of them (Cbo5) did not show any physiological effects. The ones toxic to mice showed that they are modifiers of the gating mechanism of the channels and belong to the beta type scorpion toxin (ß-ScTx), affecting mainly the Nav1.6 channels. A phylogenetic tree analysis of their sequences confirmed the high degree of amino acid similarities with other known bona fide ß-ScTx. The envenomation caused by this venom in mice is treated by using commercially horse antivenom available in Mexico. The potential neutralization of the toxic components was evaluated by means of surface plasmon resonance using four antibody fragments (10FG2, HV, LR, and 11F) which have been developed by our group. These antitoxins are antibody fragments of single-chain antibody type, expressed in E. coli and capable of recognizing Cbo1 to Cbo4 toxins to various degrees.


Assuntos
Animais Peçonhentos , Perciformes , Peçonhas , Humanos , Cricetinae , Animais , Cavalos , Camundongos , Escorpiões , Cricetulus , Escherichia coli , Filogenia , Antivenenos , Aminoácidos , Fragmentos de Imunoglobulinas , Peptídeos
4.
Biochemistry ; 52(14): 2440-52, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23496776

RESUMO

Spider venom toxins have raised interest in prospecting new drugs and pesticides. Nevertheless, few studies are conducted with tarantula toxins, especially with species found in Brazil. This study aims to characterize chemically and biologically the first toxin isolated from Acanthoscurria paulensis venom. Ap1a consists of 48 amino acid residues and has a molecular mass of 5457.79 Da. The cloned gene encodes a putative sequence of 23 amino acid residues for the signal peptide and 27 for the pro-peptide. The sequence of the mature peptide is 60-84% identical with those of toxins of the HWTX-II family. Different from the structural pattern proposed for these toxins, the disulfide pairing of Ap1a is of the ICK type motif, which is also shared by the U1-TRTX-Bs1a toxin. Ap1a induced a dose-dependent and reversible paralytic effect in Spodoptera frugiperda caterpillars, with an ED50 of 13.0 ± 4.2 µg/g 8 h after injections. In the Drosophila melanogaster Giant Fiber circuit, Ap1a (1.14-22.82 µg/g) reduces both the amplitude and frequency of responses from GF-TTM and GF-DLM pathways, suggesting an action at the neuromuscular junction, which is mediated by glutamatergic receptors. It is also lethal to mice (1.67 µg/g, intracranial route), inducing effects similar to those reported with intracerebroventricular administration of NMDA. Ap1a (1 µM) does not alter the response induced by acetylcholine on the rhabdomyosarcoma cell preparation and shows no significant effects on hNav1.2, hNav1.4, hNav1.5, and hNav1.6 channels. Because of its unique sequence and cysteine assignment to the HWTX-II family, Ap1a is a significant contribution to the structure-function study of this family of toxins.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Aranhas/química , Sequência de Aminoácidos , Animais , Cisteína/química , Feminino , Células HEK293 , Humanos , Insetos/efeitos dos fármacos , Masculino , Camundongos , Dados de Sequência Molecular , Paralisia/induzido quimicamente , Peptídeos/isolamento & purificação , Peptídeos/toxicidade , Estrutura Secundária de Proteína , Receptores Nicotínicos/metabolismo , Venenos de Aranha/isolamento & purificação , Venenos de Aranha/toxicidade , Canais de Sódio Disparados por Voltagem/metabolismo
5.
Toxins (Basel) ; 14(6)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35737030

RESUMO

Centruroides huichol scorpion venom is lethal to mammals. Analysis of the venom allowed the characterization of four lethal toxins named Chui2, Chui3, Chui4, and Chui5. scFv 10FG2 recognized well all toxins except Chui5 toxin, therefore a partial neutralization of the venom was observed. Thus, scFv 10FG2 was subjected to three processes of directed evolution and phage display against Chui5 toxin until obtaining scFv HV. Interaction kinetic constants of these scFvs with the toxins were determined by surface plasmon resonance (SPR) as well as thermodynamic parameters of scFv variants bound to Chui5. In silico models allowed to analyze the molecular interactions that favor the increase in affinity. In a rescue trial, scFv HV protected 100% of the mice injected with three lethal doses 50 (LD50) of venom. Moreover, in mix-type neutralization assays, a combination of scFvs HV and 10FG2 protected 100% of mice injected with 5 LD50 of venom with moderate signs of intoxication. The ability of scFv HV to neutralize different toxins is a significant achievement, considering the diversity of the species of Mexican venomous scorpions, so this scFv is a candidate to be part of a recombinant anti-venom against scorpion stings in Mexico.


Assuntos
Venenos de Escorpião , Escorpiões , Sequência de Aminoácidos , Animais , Fragmentos de Imunoglobulinas , Mamíferos , México , Camundongos , Proteínas Recombinantes , Venenos de Escorpião/toxicidade
6.
Toxins (Basel) ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201318

RESUMO

The Colombian scorpion Centruroides margaritatus produces a venom considered of low toxicity. Nevertheless, there are known cases of envenomation resulting in cardiovascular disorders, probably due to venom components that target ion channels. Among them, the humanether-à-go-go-Related gene (hERG1) potassium channels are critical for cardiac action potential repolarization and alteration in its functionality are associated with cardiac disorders. This work describes the purification and electrophysiological characterization of a Centruroides margaritatus venom component acting on hERG1 channels, the CmERG1 toxin. This novel peptide is composed of 42 amino acids with a MW of 4792.88 Da, folded by four disulfide bonds and it is classified as member number 10 of the γ-KTx1 toxin family. CmERG1 inhibits hERG1 currents with an IC50 of 3.4 ± 0.2 nM. Despite its 90.5% identity with toxin É£-KTx1.1, isolated from Centruroides noxius, CmERG1 completely blocks hERG1 current, suggesting a more stable plug of the hERG channel, compared to that formed by other É£-KTx.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/farmacologia , Animais , Colômbia , Canais de Potássio Éter-A-Go-Go/fisiologia , Peptídeos/isolamento & purificação , Bloqueadores dos Canais de Potássio/isolamento & purificação , Venenos de Escorpião/isolamento & purificação , Escorpiões
7.
Toxicon ; 197: 114-125, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901550

RESUMO

The peptide, denominated Ct1a, is a ß-toxin of 66 amino acids, isolated from venom of the scorpion, Centruroides tecomanus, collected in Colima, Mexico. This toxin was purified using size exclusion, cationic exchange, and reverse phase chromatography. It is the most abundant toxin, representing 1.7% of the soluble venom. Its molecular mass of 7588.9 Da was determined by mass spectrometry. The amino acid sequence was determined by Edman degradation and confirmed by transcriptomic analysis. Since neurons of the suprachiasmatic nucleus (SCN) maintain a spontaneous firing rate (SFR), we evaluated the physiological effects of toxin Ct1a on these neurons. The SFR exhibited a bimodal concentration-dependent response: 100 nM of Ct1a increased the SFR by 223%, whereas 500 nM and 1000 nM reduced it to 42% and 7%, respectively. Control experiments, consisting of recordings of the SFR during a time similar to that used in Ct1a testing, showed stability throughout the trials. Experiments carried out with denatured Ct1a toxin (500 nM) caused no variation in SFR recordings. Action potentials of SCN neurons, before and after Ct1a (100 nM) showed changes in the time constants of depolarization and repolarization phases, amplitude, and half-time. Finally, recordings of hNav1.6 sodium currents indicated that Ct1a shifts the channel activation to a more negative potential and reduces the amplitude of the peak current. These results all demonstrate that toxin Ct1a affects the SFR of SCN neurons by acting upon sodium channels of sub-type 1.6, implicating them in regulation of the SFR of SCN neurons.


Assuntos
Venenos de Escorpião , Escorpiões , Animais , México , Neurônios , Núcleo Supraquiasmático , Peçonhas
8.
Toxicon ; 184: 10-18, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32479835

RESUMO

In this communication the isolation, chemical and physiological characterization of three new toxins from the scorpion Centruroides baergi are reported. Their immunoreactive properties with scFvs generated in our group are described. The three new peptides, named Cb1, Cb2 and Cb3 affect voltage-dependent Na+ channels in a differential manner. These characteristics, explain the toxicity of this venom. Molecular interactions in real-time among these toxins and the best recombinant antibodies generated in our group, revealed that one of them was able to neutralize the main toxin of this venom (Cb1). These results represent an important advance for the neutralization of this venom and serve as the basis for generating new scFvs that will allow the neutralization of similar toxins from other venoms that have no yet been neutralized.


Assuntos
Venenos de Escorpião/análise , Escorpiões , Sequência de Aminoácidos , Animais , Fenômenos Eletrofisiológicos , México , Proteínas Recombinantes , Venenos de Escorpião/imunologia , Alinhamento de Sequência , Anticorpos de Cadeia Única
9.
J Med Chem ; 63(17): 9500-9511, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787139

RESUMO

Peptidase inhibitors (PIs) have been broadly studied due to their wide therapeutic potential for human diseases. A potent trypsin inhibitor from Tityus obscurus scorpion venom was characterized and named ToPI1, with 33 amino acid residues and three disulfide bonds. The X-ray structure of the ToPI1:trypsin complex, in association with the mass spectrometry data, indicate a sequential set of events: the complex formation with the inhibitor Lys32 in the trypsin S1 pocket, the inhibitor C-terminal residue Ser33 cleavage, and the cyclization of ToPI1 via a peptide bond between residues Ile1 and Lys32. Kinetic and thermodynamic characterization of the complex was obtained. ToPI1 shares no sequence similarity with other PIs characterized to date and is the first PI with CS-α/ß motif described from animal venoms. In its cyclic form, it shares structural similarities with plant cyclotides that also inhibit trypsin. These results bring new insights for studies with venom compounds, PIs, and drug design.


Assuntos
Ciclotídeos/química , Ciclotídeos/metabolismo , Venenos de Escorpião/química , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Ciclização , Modelos Moleculares , Ligação Proteica , Conformação Proteica
10.
J Proteomics ; 225: 103863, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526478

RESUMO

Proteomic characterization of Micrurus browni browni venom showed approximately 41 components belonging to 9 protein families, mainly phospholipases A2 (PLA2s) and three-finger toxins (3FTxs). Venom gland transcriptome yielded 39 venom transcripts belonging to 10 protein families. Functional characterization identified a multimeric toxin, here designated Brownitoxin-1, which comprises at least one PLA2 and one 3FTx. Its components have no or very low lethality individually but become extremely lethal when combined; both were partially characterized. Other two lethal components were identified: A neurotoxic PLA2, and a postsynaptic α-neurotoxin. LD50s as well as PLA2 and nAChR-blocking activities were determined for whole venom and isolated components. Application of venom to murine neuromuscular preparations caused a progressive decrease of twitch force that was irreversible after washing. Inhibition of PLA2 activity with p-bromophenacyl bromide (pBPB) showed that approximately 90% of toxicity is dependent on this activity. Non-lethal components include diverse 3FTxs, at least three enzymatically active PLA2s and the nociceptive toxin MitTx. No evidence of specificity towards prey was observed. This work is one of the most complete characterizations of a coral snake venom so far and its findings highlight the relevance of protein complexes in venom function. SIGNIFICANCE: This study represents a profound analysis of the venom of the coral snake Micrurus browni browni, including a venom proteome, venom gland transcriptomic data and functional studies of whole venom and isolated toxins. It significantly contributes to the understanding of North American coral snake venoms, which are currently largely unknown. It includes characterization of relevant venom components, one of which represents the first description of a lethal multimeric neurotoxin in coral snake venom. This work highlights the importance of protein complexes in coral snake venom and could serve as a basis for the finding of several other multimeric toxins. Finally, we report the absence of taxon specificity, which has been previously reported in the venoms of other snakes of the same genus.


Assuntos
Cobras Corais , Animais , Cobras Corais/genética , Venenos Elapídicos/toxicidade , Elapidae , Camundongos , Neurotoxinas/toxicidade , Fosfolipases A2 , Proteômica , Transcriptoma
11.
Proteomics ; 8(9): 1919-32, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18384102

RESUMO

The protein composition of the soluble venom from the South American fish-eating coral snake Micrurus surinamensis surinamensis, here abbreviated M. surinamensis, was separated by RP-HPLC and 2-DE, and their components were analyzed by automatic Edman degradation, MALDI-TOF and ESI-MS/MS. Approximately 100 different molecules were identified. Sixty-two components possess molecular masses between 6 and 8 kDa, are basically charged molecules, among which are cytotoxins and neurotoxins lethal to fish (Brachidanios rerio). Six new toxins (abbreviated Ms1-Ms5 and Ms11) were fully sequenced. Amino acid sequences similar to the enzymes phospholipase A2 and amino acid oxidase were identified. Over 20 additional peptides were identified by sequencing minor components of the HPLC separation and from 2-DE gels. A functional assessment of the physiological activity of the six toxins was also performed by patch clamp using muscular nicotinic acetylcholine receptor assays. Variable degrees of blockade were observed, most of them reversible. The structural and functional data obtained were used for phylogenetic analysis, providing information on some evolutionary aspects of the venom components of this snake. This contribution increases by a factor of two the total number of alpha-neurotoxins sequenced from the Micrurus genus in currently available literature.


Assuntos
Proteômica/métodos , Venenos de Serpentes/análise , Aminoácido Oxirredutases/metabolismo , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Peixes , Humanos , Técnicas de Patch-Clamp , Fosfolipases A2/metabolismo , Filogenia , Receptores Colinérgicos/metabolismo , Venenos de Serpentes/química , Serpentes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Neurochem Res ; 33(8): 1525-33, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18338253

RESUMO

Voltage-gated potassium channels of the ether-a-go-go related gene (ERG) family are implicated in many important cellular processes. Three such genes have been cloned (erg1, erg2 and erg3) and shown to be expressed in the central nervous system (CNS) of mammalians. This communication describes the isolation and characterization of two isoforms of scorpion toxin (CeErg4 and CeErg5, systematic nomenclature gamma-KTx1.7 and gamma-KTx1.8, respectively) that can discriminate the various subtypes of ERG channels of human and rat. These peptides were purified from the venom of the Mexican scorpion Centruroides elegans elegans. They contain 42 amino acid residues, tightly folded by four disulfide bridges. Both peptides block in a reversible manner human and rat ERG1 channels, but have no effect on human ERG2. They also block completely and irreversibly the rat ERG2 and the human ERG3 channels hence are excellent tools for the discrimination of the various sub-types of ion-channels studied.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Bloqueadores dos Canais de Potássio , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/metabolismo , Escorpiões/química , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Peptídeos/genética , Bloqueadores dos Canais de Potássio/isolamento & purificação , Bloqueadores dos Canais de Potássio/metabolismo , Ratos , Venenos de Escorpião/genética , Alinhamento de Sequência
13.
Artigo em Inglês | MEDLINE | ID: mdl-29988683

RESUMO

BACKGROUND: Centruroides hirsutipalpus, of the family Buthidae, is a scorpion endemic to the Western Pacific region of Mexico. Although medically important, its venom has not yet been studied. Therefore, this communication aims to identify their venom components and possible functions. METHODS: Fingerprinting mass analysis of the soluble venom from this scorpion was achieved by high-performance liquid chromatography and electrospray mass spectrometry. Furthermore, the soluble venom and its toxic effects were evaluated extensively via electrophysiological assays in HEK cells expressing human voltage-gated Na+ channels (hNav 1.1 to Nav1.6), CHO cells expressing hNav 1.7, potassium channel hERG 1 (Ether-à-go-go-related-gene) and the human K+-channel hKv1.1. RESULTS: The separation of soluble venom produced 60 fractions from which 83 distinct components were identified. The molecular mass distribution of these components varies from 340 to 21,120 Da. Most of the peptides have a molecular weight between 7001 and 8000 Da (46% components), a range that usually corresponds to peptides known to affect Na+ channels. Peptides with molecular masses from 3000 to 5000 Da (28% of the components) were identified within the range corresponding to K+-channel blocking toxins. Two peptides were obtained in pure format and completely sequenced: one with 29 amino acids, showing sequence similarity to an "orphan peptide" of C. limpidus, and the other with 65 amino acid residues shown to be an arthropod toxin (lethal to crustaceans and toxic to crickets). The electrophysiological results of the whole soluble venom show a beta type modification of the currents of channels Nav1.1, Nav1.2 and Nav1.6. The main effect observed in channels hERG and hKv 1.1 was a reduction of the currents. CONCLUSION: The venom contains more than 83 distinct components, among which are peptides that affect the function of human Na+-channels and K+-channels. Two new complete amino acid sequences were determined: one an arthropod toxin, the other a peptide of unknown function.

14.
Biochimie ; 147: 114-121, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29391193

RESUMO

The three-finger toxins (3FTxs) represent an extremely diverse protein family in elapid venoms, where the short chain α-neurotoxins are the most relevant toxin group from the clinical point of view. Essentially, the 3FTxs variability and the low proportions of α-neurotoxins in the venoms of North American coral snakes make it difficult to obtain effective elapid antivenoms against the envenomation symptoms caused mainly by these α-neurotoxins. In this work, thirty 3FTx transcript sequences were obtained from the venom glands of four coral snake species from Mexico (M. diastema, M. laticollaris, M. browni and M. tener). The transcripts were mined using a forward oligonucleotide based on the highly conserved signal peptide from the 3FTxs, and four of these transcripts, named MlatA1, B.D, B.E and D.H, encoded for short-chain α-neurotoxins. Additionally, one isoform of the D.H α-neurotoxin transcript was identified in the venom of M. diastema. The mature α-neurotoxin coded in the D.H transcript was heterologously expressed, and it was found soluble (4.2 mg/l) in the cytoplasm of a bacterial system. The recombinant D.H (rD.H) had an IC50 value of 31.5 ±â€¯4.4 nM on nicotinic acetylcholine receptors of the muscular type expressed in rhabdomyosarcoma cells (TE671). The rDH also had an LD50 of 0.15 mg/kg mice, and it was evaluated as a potential immunogen in New Zealand rabbits. The protective capacity of rabbit sera was tested against two native coral snake α-neurotoxins, and against rD.H. One of the anti-rD.H rabbit sera was able to neutralize the lethality of all three neurotoxins when tested in groups of CD1 mice. This work contributes to the increasing understanding of the high diversity of 3FTxs, and shows that recombinant coral snake α-neurotoxins are promising supplements for hyperimmunization protocols for coral snake antivenom production.


Assuntos
Cobras Corais/genética , Venenos Elapídicos/genética , Neurotoxinas/química , Neurotoxinas/genética , Análise de Sequência , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Clonagem Molecular , Expressão Gênica , Neurotoxinas/imunologia
15.
Toxicon ; 153: 23-31, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30153434

RESUMO

A proteomic analysis of the soluble venom of the coral snake Micrurus pyrrhocryptus is reported in this work. The whole soluble venom was separated by RP-HPLC and the molecular weights of its components (over 100) were determined by mass spectrometry. Three main sets of components were identified, corresponding to peptides with molecular masses from 5 to 8 kDa, proteins from 12 to 16 kDa and proteins from 20 to 30 kDa. Two components were fully sequenced: one α-neurotoxic peptide of 7210 Da with slight blocking activity of the nicotinic acetylcholine receptor (nAChR) and a phospholipase A2 (PLA2) with molecular weight 13517 Da and no effect on the nAChR. PLA2 activity was evaluated for all RP-HPLC components. In addition, N-terminal sequence was obtained for eleven components using Edman degradation. Among these, three were similar to known PLA2's, six to three-finger toxins (3FTx) and one to Kunitz-type serine protease inhibitors. Two-dimensional gel electrophoresis of the venom allowed the separation of about thirty spots with components of molecular weights from 25 to 70 kDa. Seventeen spots were recovered from the gel, digested with trypsin and the corresponding peptides (85) were sequenced by MS/MS allowing identification of amino acid sequences with similarities to snake venom metalloproteases (SVMP), PLA2's, L-amino acid oxidases (LAAO), acetylcholinesterases (AChE) and serine proteases (SP). In addition, LC-MS analysis of peptides obtained from tryptic digestion of whole soluble venom allowed the identification of 695 peptides, whose amino acid sequence could correspond to at least 355 components found in other snake venoms, where C-type lectins, vespryns, zinc finger proteins, and waprins were found, among others. These results show the complexity of the venom and provide important knowledge for future work on identification and activity determination of venom components from this coral snake.


Assuntos
Cobras Corais , Venenos Elapídicos/química , Proteômica , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Venenos Elapídicos/enzimologia , Venenos Elapídicos/toxicidade , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Camundongos , Peptídeos
16.
FEBS J ; 274(15): 3972-85, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17635581

RESUMO

alpha-Conotoxins from marine snails are known to be selective and potent competitive antagonists of nicotinic acetylcholine receptors. Here we describe the purification, structural features and activity of two novel toxins, SrIA and SrIB, isolated from Conus spurius collected in the Yucatan Channel, Mexico. As determined by direct amino acid and cDNA nucleotide sequencing, the toxins are peptides containing 18 amino acid residues with the typical 4/7-type framework but with completely novel sequences. Therefore, their actions (and that of a synthetic analog, [gamma15E]SrIB) were compared to those exerted by the alpha4/7-conotoxin EI from Conus ermineus, used as a control. Their target specificity was evaluated by the patch-clamp technique in mammalian cells expressing alpha(1)beta(1)gammadelta, alpha(4)beta(2) and alpha(3)beta(4) nicotinic acetylcholine receptors. At high concentrations (10 microm), the peptides SrIA, SrIB and [gamma15E]SrIB showed weak blocking effects only on alpha(4)beta(2) and alpha(1)beta(1)gammadelta subtypes, but EI also strongly blocked alpha(3)beta(4) receptors. In contrast to this blocking effect, the new peptides and EI showed a remarkable potentiation of alpha(1)beta(1)gammadelta and alpha(4)beta(2) nicotinic acetylcholine receptors if briefly (2-15 s) applied at concentrations several orders of magnitude lower (EC(50), 1.78 and 0.37 nm, respectively). These results suggest not only that the novel alpha-conotoxins and EI can operate as nicotinic acetylcholine receptor inhibitors, but also that they bind both alpha(1)beta(1)gammadelta and alpha(4)beta(2) nicotinic acetylcholine receptors with very high affinity and increase their intrinsic cholinergic response. Their unique properties make them excellent tools for studying the toxin-receptor interaction, as well as models with which to design highly specific therapeutic drugs.


Assuntos
Conotoxinas/metabolismo , Conotoxinas/farmacologia , Caramujo Conus/metabolismo , Antagonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Conotoxinas/química , Conotoxinas/isolamento & purificação , Caramujo Conus/química , Caramujo Conus/genética , Dissulfetos/química , Dissulfetos/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/isolamento & purificação , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Sensibilidade e Especificidade
17.
Toxicon ; 49(2): 239-48, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17097705

RESUMO

The critical role that ether-à-go-go-related gene (erg) K(+) channels play in mating in Caenorhabditis elegans, neuronal seizures in Drosophila and cardiac action potential repolarization in humans has been well documented. Three erg genes (erg1, erg2 and erg3) have been identified and characterized. A structurally diverse number of compounds block these channels, but do not display specificity among the different channel isoforms. In this review we describe the blocking properties of several peptides, purified from scorpion, sea anemone and spider venoms, which are selective for certain members of the ERG family of channels. These peptides do not behave as classical pore blockers and appear to modify the gating properties of the channel. Genomic studies predict the existence of many other novel peptides with the potential of being more selective for ERG channels than those discussed here.


Assuntos
Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Ativação do Canal Iônico , Bloqueadores dos Canais de Potássio/farmacologia , Peçonhas/farmacologia , Animais , Venenos de Cnidários/farmacologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Venenos de Escorpião/farmacologia , Anêmonas-do-Mar , Venenos de Aranha/farmacologia , Peçonhas/genética
18.
Toxins (Basel) ; 9(3)2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28241514

RESUMO

Scorpion stings on humans are medically relevant because they may contain toxins that specifically target ion channels. During antivenom production, pharmaceutical companies must use a large number of experimental animals to ensure the antivenom's efficacy according to pharmacopeia methods. Here we present an electrophysiological alternative for the evaluation of horse antivenoms produced against two species of Moroccan scorpions: Buthus mardochei and Androctonus mauretanicus. Human sodium and potassium channels and acetylcholine nicotinic receptors were analyzed by standard patch-clamp techniques. The results showed that the antivenom is capable of reversing ion current disruption caused by the venom application. We propose the use of this in vitro technique for antivenom evaluation as an alternative to using a large number of live animals.


Assuntos
Antivenenos/farmacologia , Venenos de Escorpião/toxicidade , Canais de Sódio/fisiologia , Alternativas aos Testes com Animais , Animais , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Escorpiões
19.
Peptides ; 87: 34-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27871874

RESUMO

A previously undescribed toxic peptide named Cl13 was purified from the venom of the Mexican scorpion Centruroides limpidus. It contains 66 amino acid residues, including four disulfide bonds. The physiological effects assayed in 7 different subtypes of voltage gated Na+-channels, showed that it belongs to the ß-scorpion toxin type. The most notorious effects were observed in subtypes Nav1.4, Nav1.5 and Nav1.6. Although having important sequence similarities with two other lethal toxins from this scorpion species (Cll1m and Cll2), the recently developed single chain antibody fragments (scFv) of human origin were not capable of protecting against Cl13. At the amino acid sequence level, in 3 stretches of peptide Cl13 (positions 7-9, 30-38 and 62-66) some differences with respect to other similar toxins are observed. Some of these differences coincide with contact points with the human antibody fragments.


Assuntos
Peptídeos/imunologia , Venenos de Escorpião/imunologia , Canais de Sódio Disparados por Voltagem/imunologia , Sequência de Aminoácidos/genética , Animais , Humanos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Escorpiões/química , Escorpiões/genética , Escorpiões/imunologia , Alinhamento de Sequência , Anticorpos de Cadeia Única/imunologia , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
20.
Peptides ; 68: 11-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24862827

RESUMO

A new peptide with 61 amino acids cross-linked by 4 disulfide bridges, with molecular weight of 6938.12Da, and an amidated C-terminal amino acid residue was purified and characterized. The primary structure was obtained by direct Edman degradation and sequencing its gene. The peptide is lethal to mammals and was shown to be similar (95% identity) to toxin Ts1 (gamma toxin) from the Brazilian scorpion Tityus serrulatus; it was named Tt1g (from T. trivittatus toxin 1 gamma-like). Tt1g was assayed on several sub-types of Na(+)-channels showing displacement of the currents to more negative voltages, being the hNav1.3 the most affected channel. This toxin displays characteristics typical to the ß-type sodium scorpion toxins. Lethality tests and physiological assays indicate that this peptide is probably the most important toxic component of this species of scorpion, known for causing human fatalities in the South American continent.


Assuntos
Proteínas de Artrópodes/farmacologia , Venenos de Escorpião/química , Escorpiões/química , Bloqueadores dos Canais de Sódio/farmacologia , Sequência de Aminoácidos , Animais , Argentina , Proteínas de Artrópodes/química , Proteínas de Artrópodes/isolamento & purificação , Sequência de Bases , Células HEK293 , Humanos , Dose Letal Mediana , Camundongos , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/isolamento & purificação , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA