Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 24(9): 3823-37, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23023171

RESUMO

The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant-fungus pathosystem has conditionally mutualistic features.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Brassica napus/fisiologia , Doenças das Plantas/microbiologia , Verticillium/fisiologia , Xilema/fisiologia , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Brassica napus/citologia , Brassica napus/genética , Brassica napus/microbiologia , Diferenciação Celular , Secas , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Especificidade de Órgãos , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/microbiologia , Feixe Vascular de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo , Xilema/citologia , Xilema/genética , Xilema/microbiologia
2.
New Phytol ; 202(2): 565-581, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24433459

RESUMO

Six transcription regulatory genes of the Verticillium plant pathogen, which reprogrammed nonadherent budding yeasts for adhesion, were isolated by a genetic screen to identify control elements for early plant infection. Verticillium transcription activator of adhesion Vta2 is highly conserved in filamentous fungi but not present in yeasts. The Magnaporthe grisea ortholog conidiation regulator Con7 controls the formation of appressoria which are absent in Verticillium species. Vta2 was analyzed by using genetics, cell biology, transcriptomics, secretome proteomics and plant pathogenicity assays. Nuclear Vta2 activates the expression of the adhesin-encoding yeast flocculin genes FLO1 and FLO11. Vta2 is required for fungal growth of Verticillium where it is a positive regulator of conidiation. Vta2 is mandatory for accurate timing and suppression of microsclerotia as resting structures. Vta2 controls expression of 270 transcripts, including 10 putative genes for adhesins and 57 for secreted proteins. Vta2 controls the level of 125 secreted proteins, including putative adhesins or effector molecules and a secreted catalase-peroxidase. Vta2 is a major regulator of fungal pathogenesis, and controls host-plant root infection and H2 O2 detoxification. Verticillium impaired in Vta2 is unable to colonize plants and induce disease symptoms. Vta2 represents an interesting target for controlling the growth and development of these vascular pathogens.


Assuntos
Estruturas Fúngicas/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Fatores de Transcrição/genética , Verticillium/genética , Brassica napus/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Solanum lycopersicum/microbiologia , Ativação Transcricional , Verticillium/crescimento & desenvolvimento , Verticillium/patogenicidade , Leveduras
3.
Mol Plant Microbe Interact ; 26(8): 850-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23594348

RESUMO

Verticillium longisporum is a vascular pathogen that infects the Brassicaceae host plants Arabidopsis thaliana and Brassica napus. The soilborne fungus enters the plant via the roots and colonizes the xylem of roots, stems, and leaves. During late stages of infections, Verticillium spp. spread into senescing tissue and switch from biotrophic to a necrotrophic life style. Typical symptoms of V. longisporum-induced disease are stunted growth and leaf chlorosis. Expression analyses of the senescence marker genes SENESCENCE-ASSOCIATED GENE12, SENESCENCE-ASSOCIATED GENE13, and WRKY53 revealed that the observed chlorosis is a consequence of premature senescence triggered by Verticillium infection. Our analyses show that, concomitant with the development of chlorosis, levels of trans-zeatin decrease in infected plants. Potentially, induction of cytokinin oxidase/dehydrogenase expression by Verticillium infection contributes to the observed decreases in cytokinin levels. Stabilization of Arabidopsis cytokinin levels by both pharmacological and genetic approaches inhibits Verticillium proliferation and coincides with reduced disease symptom development. In summary, our results indicate that V. longisporum triggers premature plant senescence for efficient host plant colonization.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Doenças das Plantas/microbiologia , Verticillium/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Citocininas/genética , DNA Fúngico/isolamento & purificação , DNA Fúngico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fatores de Tempo
4.
Appl Microbiol Biotechnol ; 85(6): 1961-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19826808

RESUMO

The first leaky auxotrophic mutant for aromatic amino acids of the near-diploid fungal plant pathogen Verticillium longisporum (VL) has been generated. VL enters its host Brassica napus through the roots and colonizes the xylem vessels. The xylem contains little nutrients including low concentrations of amino acids. We isolated the gene Vlaro2 encoding chorismate synthase by complementation of the corresponding yeast mutant strain. Chorismate synthase produces the first branch point intermediate of aromatic amino acid biosynthesis. A novel RNA-mediated gene silencing method reduced gene expression of both isogenes by 80% and resulted in a bradytrophic mutant, which is a leaky auxotroph due to impaired expression of chorismate synthase. In contrast to the wild type, silencing resulted in increased expression of the cross-pathway regulatory gene VlcpcA (similar to cpcA/GCN4) during saprotrophic life. The mutant fungus is still able to infect the host plant B. napus and the model Arabidopsis thaliana with reduced efficiency. VlcpcA expression is increased in planta in the mutant and the wild-type fungus. We assume that xylem colonization requires induction of the cross-pathway control, presumably because the fungus has to overcome imbalanced amino acid supply in the xylem.


Assuntos
Brassica napus/metabolismo , Proteínas Fúngicas/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Verticillium/enzimologia , Xilema/metabolismo , Arabidopsis , Brassica napus/microbiologia , Proteínas Fúngicas/genética , Inativação Gênica , Fósforo-Oxigênio Liases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Verticillium/genética , Verticillium/patogenicidade , Xilema/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA