Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 64(8): e177-e183, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37335622

RESUMO

We have shown previously that the ketogenic diet (KD) is effective in reducing seizures associated with infantile spasms syndrome (ISS) and that this benefit is related to alterations in the gut microbiota. However, it remains unclear whether the efficacy of the KD persists after switching to a normal diet. Employing a neonatal rat model of ISS, we tested the hypothesis that the impact of the KD would diminish when switched to a normal diet. Following epilepsy induction, neonatal rats were divided into two groups: continuous KD for 6 days; and a group fed with KD for 3 days and then a normal diet for 3 days. Spasms frequency, mitochondrial bioenergetics in the hippocampus, and fecal microbiota were evaluated as major readouts. We found that the anti-epileptic effect of the KD was reversible, as evidenced by the increased spasms frequency in rats that were switched from the KD to a normal diet. The spasms frequency was correlated inversely with mitochondrial bioenergetic function and a set of gut microbes, including Streptococcus thermophilus and Streptococcus azizii. These findings suggest that the anti-epileptic and metabolic benefits of the KD decline rapidly in concert with gut microbial alterations in the ISS model.


Assuntos
Dieta Cetogênica , Epilepsia , Microbioma Gastrointestinal , Espasmos Infantis , Ratos , Animais , Convulsões , Espasmos Infantis/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Espasmo
2.
Epilepsia ; 64(8): 2186-2199, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209379

RESUMO

OBJECTIVE: KCNA1 mutations are associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1), and epilepsy is a common comorbidity. Current medications provide only partial relief for ataxia and/or seizures, making new drugs needed. Here, we characterized zebrafish kcna1a-/- as a model of EA1 with epilepsy and compared the efficacy of the first-line therapy carbamazepine in kcna1a-/- zebrafish to Kcna1-/- rodents. METHODS: CRISPR/Cas9 mutagenesis was used to introduce a mutation in the sixth transmembrane segment of the zebrafish Kcna1 protein. Behavioral and electrophysiological assays were performed on kcna1a-/- larvae to assess ataxia- and epilepsy-related phenotypes. Real-time quantitative polymerase chain reaction (qPCR) was conducted to measure mRNA levels of brain hyperexcitability markers in kcna1a-/- larvae, followed by bioenergetics profiling to evaluate metabolic function. Drug efficacies were tested using behavioral and electrophysiological assessments, as well as seizure frequency in kcna1a-/- zebrafish and Kcna1-/- mice, respectively. RESULTS: Zebrafish kcna1a-/- larvae showed uncoordinated movements and locomotor deficits, along with scoliosis and increased mortality. The mutants also exhibited impaired startle responses when exposed to light-dark flashes and acoustic stimulation as well as hyperexcitability as measured by extracellular field recordings and upregulated fosab transcripts. Neural vglut2a and gad1b transcript levels were disrupted in kcna1a-/- larvae, indicative of a neuronal excitatory/inhibitory imbalance, as well as a significant reduction in cellular respiration in kcna1a-/- , consistent with dysregulation of neurometabolism. Notably, carbamazepine suppressed the impaired startle response and brain hyperexcitability in kcna1a-/- zebrafish but had no effect on the seizure frequency in Kcna1-/- mice, suggesting that this EA1 zebrafish model might better translate to humans than rodents. SIGNIFICANCE: We conclude that zebrafish kcna1a-/- show ataxia and epilepsy-related phenotypes and are responsive to carbamazepine treatment, consistent with EA1 patients. These findings suggest that kcna1-/- zebrafish are a useful model for drug screening as well as studying the underlying disease biology.


Assuntos
Epilepsia , Peixe-Zebra , Humanos , Camundongos , Animais , Ataxia/tratamento farmacológico , Ataxia/genética , Ataxia/complicações , Convulsões/complicações , Carbamazepina/farmacologia , Carbamazepina/uso terapêutico , Canal de Potássio Kv1.1/genética
3.
Brain ; 145(9): 2991-3009, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34431999

RESUMO

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.


Assuntos
Epilepsia Generalizada , Síndromes Epilépticas , Deficiência Intelectual , Canal de Sódio Disparado por Voltagem NAV1.6 , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/genética , Estudos de Associação Genética , Humanos , Lactente , Deficiência Intelectual/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Prognóstico , Convulsões/tratamento farmacológico , Convulsões/genética , Bloqueadores dos Canais de Sódio/uso terapêutico
4.
Neuroimage ; 250: 118935, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091079

RESUMO

Disruptions in oxidative metabolism may occur in multiple sclerosis and other demyelinating neurological diseases. The impact of demyelination on metabolic rate is also not understood. It is possible that mitochondrial damage may be associated with many such neurological disorders. To study oxidative metabolism with one model of demyelination, we implemented a novel multimodal imaging technique combining Near-Infrared Spectroscopy (NIRS) and MRI to cuprizone mouse model. The cuprizone model is used to study demyelination and may be associated with inhibition of mitochondrial function. Cuprizone mice showed reduced oxygen extraction fraction (-39.1%, p ≤ 0.001), increased tissue oxygenation (6.4%, p ≤ 0.001), and reduced cerebral metabolic rate of oxygen in cortical gray matter (-62.1%, p ≤ 0.001). These changes resolved after the cessation of cuprizone exposure and partial remyelination. A decrease in hemoglobin concentration (-34.4%, p ≤ 0.001), but no change in cerebral blood flow were also observed during demyelination. The oxidized state of the mitochondrial enzyme, Cytochrome C Oxidase (CCO) increased (46.3%, p ≤ 0.001) while the reduced state decreased (-34.4%, p ≤ 0.05) significantly in cuprizone mice. The total amount of CCO did not change significantly during cuprizone exposure. Total CCO did decline after recovery both in control (-23.1%, p ≤ 0.01) and cuprizone (-28.8%, p ≤ 0.001) groups which may relate to age. A reduction in the magnetization transfer ratio, indicating demyelination, was found in the cuprizone group in the cerebral cortex (-3.2%, p ≤ 0.01) and corpus callosum (-5.5%, p ≤ 0.001). In summary, we were able to detect evidence of altered CCO metabolism during cuprizone exposure, consistent with a mitochondrial defect. We observed increased oxygenation and reduced metabolic rate associated with reduced myelination in the gray and white matter. The novel multimodal imaging technique applied here shows promise for noninvasively assessing parameters associated with oxidative metabolism in both mouse models of neurological disease and for translation to study oxidative metabolism in the human brain.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Cuprizona/farmacologia , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/metabolismo , Imageamento por Ressonância Magnética/métodos , Mitocôndrias/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Hipóxia Celular , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Remielinização/fisiologia , Marcadores de Spin
5.
Neuroimage ; 244: 118542, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530134

RESUMO

Ketogenic diet (KD) is a high-fat and low-carbohydrate therapy for medically intractable epilepsy, and its applications in other neurological conditions, including those occurring in children, have been increasingly tested. However, how KD affects childhood neurodevelopment, a highly sensitive and plastic process, is not clear. In this study, we explored structural, metabolic, and functional consequences of a brief treatment of a strict KD (weight ratio of fat to carbohydrate plus protein is approximately 6.3:1) in naive juvenile mice of different inbred strains, using a multidisciplinary approach. Systemic measurements using magnetic resonance imaging revealed that unexpectedly, the volumes of most brain structures in KD-fed mice were about 90% of those in mice of the same strain but fed a standard diet. The reductions in volumes were nonselective, including different regions throughout the brain, the ventricles, and the white matter. The relative volumes of different brain structures were unaltered. Additionally, as KD is a metabolism-based treatment, we performed untargeted metabolomic profiling to explore potential means by which KD affected brain growth and to identify metabolic changes in the brain. We found that brain metabolomic profile was significantly impacted by KD, through both distinct and common pathways in different mouse strains. To explore whether the volumetric and metabolic changes induced by this KD treatment were associated with functional consequences, we recorded spontaneous EEG to measure brain network activity. Results demonstrated limited alterations in EEG patterns in KD-fed animals. In addition, we observed that cortical levels of brain-derived neurotrophic factor (BDNF), a critical molecule in neurodevelopment, did not change in KD-fed animals. Together, these findings indicate that a strict KD could affect volumetric development and metabolic profile of the brain in inbred juvenile mice, while global network activities and BDNF signaling in the brain were mostly preserved. Whether the volumetric and metabolic changes are related to any core functional consequences during neurodevelopment and whether they are also observed in humans need to be further investigated. In addition, our results indicate that certain outcomes of KD are specific to the individual mouse strains tested, suggesting that the physiological profiles of individuals may need to be examined to maximize the clinical benefit of KD.


Assuntos
Encéfalo/metabolismo , Dieta Cetogênica , Metaboloma/fisiologia , Animais , Ventrículos Cerebrais/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Substância Branca/metabolismo
6.
Neurobiol Dis ; 154: 105335, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33741453

RESUMO

OBJECTIVES: A prolonged vasoconstriction/hypoperfusion/hypoxic event follows self-terminating focal seizures. The ketogenic diet (KD) has demonstrated efficacy as a metabolic treatment for intractable epilepsy and other disorders but its effect on local brain oxygen levels is completely unknown. This study investigated the effects of the KD on tissue oxygenation in the hippocampus before and after electrically elicited (kindled) seizures and whether it could protect against a seizure-induced learning impairment. We also examined the effects of the ketone ß-hydroxybutyrate (BHB) as a potential underlying mechanism. METHODS: Male and female rats were given access to one of three diet protocols 2 weeks prior to the initiation of seizures: KD, caloric restricted standard chow, and ad libitum standard chow. Dorsal hippocampal oxygen levels were measured prior to initiation of diets as well as before and after a 10-day kindling paradigm. Male rats were then tested on a novel object recognition task to assess postictal learning impairments. In a separate cohort, BHB was administered 30 min prior to seizure elicitation to determine whether it influenced oxygen dynamics. RESULTS: The KD increased dorsal hippocampal oxygen levels, ameliorated postictal hypoxia, and prevented postictal learning impairments. Acute BHB administration did not alter oxygen levels before or after seizures. INTERPRETATION: The ketogenic diet raised brain oxygen levels and attenuated severe postictal hypoxia likely through a mechanism independent of ketosis and shows promise as a non-pharmacological treatment to prevent the postictal state.


Assuntos
Encéfalo/metabolismo , Dieta Cetogênica/métodos , Hipóxia/metabolismo , Deficiências da Aprendizagem/metabolismo , Oxigênio/metabolismo , Convulsões/metabolismo , Animais , Feminino , Hipóxia/dietoterapia , Cetose/induzido quimicamente , Cetose/metabolismo , Deficiências da Aprendizagem/dietoterapia , Deficiências da Aprendizagem/prevenção & controle , Masculino , Neuroproteção/fisiologia , Ratos , Ratos Long-Evans , Convulsões/dietoterapia
7.
Epilepsia ; 62(8): e123-e128, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34231878

RESUMO

There is growing evidence for the disease-modifying potential of metabolic therapies, including the ketogenic diet (KD), which is used to treat medically intractable epilepsy. However, it remains unclear whether the KD exerts direct effects on histopathological changes in epileptic brain, or whether the changes are a consequence of diet-induced reduction in seizure activity. Here, we used unbiased stereological techniques to quantify the seizure-induced reduction in cell number in the CA1 region of the hippocampus of epileptic Kcna1-null mice and compared the effects of the KD with that of phenobarbital (PB), a widely employed anti-seizure drug. Our data suggest that the anti-seizure activity of the KD or PB was similar. However, CA1 cell numbers of KD-treated hippocampi were not significantly different from those seen in wild-type (WT) mice, whereas CA1 cell counts in standard diet and PB-treated Kcna1-null mice were 23% and 31% lower than WT animals, respectively. These results support the notion that structural protection of cells may involve more than seizure attenuation, and that the KD engages mechanisms that also promote or restore hippocampal morphological integrity.


Assuntos
Dieta Cetogênica , Epilepsia , Convulsões , Animais , Contagem de Células , Epilepsia/dietoterapia , Epilepsia/genética , Canal de Potássio Kv1.1/genética , Camundongos , Camundongos Knockout , Convulsões/genética
8.
J Inherit Metab Dis ; 44(1): 42-53, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32654164

RESUMO

Metabolic epilepsies arise in the context of rare inborn errors of metabolism (IEM), notably glucose transporter type 1 deficiency syndrome, succinic semialdehyde dehydrogenase deficiency, pyruvate dehydrogenase complex deficiency, nonketotic hyperglycinemia, and mitochondrial cytopathies. A common feature of these disorders is impaired bioenergetics, which through incompletely defined mechanisms result in a wide spectrum of neurological symptoms, such as epileptic seizures, developmental delay, and movement disorders. The ketogenic diet (KD) has been successfully utilized to treat such conditions to varying degrees. While the mechanisms underlying the clinical efficacy of the KD in IEM remain unclear, it is likely that the proposed heterogeneous targets influenced by the KD work in concert to rectify or ameliorate the downstream negative consequences of genetic mutations affecting key metabolic enzymes and substrates-such as oxidative stress and cell death. These beneficial effects can be broadly grouped into restoration of impaired bioenergetics and synaptic dysfunction, improved redox homeostasis, anti-inflammatory, and epigenetic activity. Hence, it is conceivable that the KD might prove useful in other metabolic disorders that present with epileptic seizures. At the same time, however, there are notable contraindications to KD use, such as fatty acid oxidation disorders. Clearly, more research is needed to better characterize those metabolic epilepsies that would be amenable to ketogenic therapies, both experimentally and clinically. In the end, the expanded knowledge base will be critical to designing metabolism-based treatments that can afford greater clinical efficacy and tolerability compared to current KD approaches, and improved long-term outcomes for patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/dietoterapia , Dieta Cetogênica , Epilepsia/dietoterapia , Corpos Cetônicos/biossíntese , Animais , Contraindicações , Metabolismo Energético , Humanos , Corpos Cetônicos/uso terapêutico , Resultado do Tratamento
9.
Cereb Cortex ; 30(9): 4964-4978, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32328622

RESUMO

The glycoprotein Reelin maintains neuronal positioning and regulates neuronal plasticity in the adult brain. Reelin deficiency has been associated with neurological diseases. We recently showed that Reelin is depleted in mice with a targeted disruption of the Ndel1 gene in forebrain postnatal excitatory neurons (Ndel1 conditional knockout (CKO)). Ndel1 CKO mice exhibit fragmented microtubules in CA1 pyramidal neurons, profound deterioration of the CA1 hippocampus and a shortened lifespan (~10 weeks). Here we report that Ndel1 CKO mice (of both sexes) experience spatial learning and memory deficits that are associated with deregulation of neuronal cell adhesion, plasticity and neurotransmission genes, as assessed by genome-wide transcriptome analysis of the hippocampus. Importantly, a single injection of Reelin protein in the hippocampus of Ndel1 CKO mice improves spatial learning and memory function and this is correlated with reduced intrinsic hyperexcitability of CA1 pyramidal neurons, and normalized gene deregulation in the hippocampus. Strikingly, when treated with Reelin, Ndel1 CKO animals that die from an epileptic phenotype, live twice as long as nontreated, or vehicle-treated CKO animals. Thus, Reelin confers striking beneficial effects in the CA1 hippocampus, and at both behavioral and organismal levels.


Assuntos
Região CA1 Hipocampal/patologia , Proteínas de Transporte/genética , Longevidade/efeitos dos fármacos , Proteína Reelina/farmacologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Feminino , Longevidade/genética , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Knockout , Mutação , Aprendizagem Espacial/efeitos dos fármacos
10.
J Proteome Res ; 19(1): 382-390, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31696714

RESUMO

The ketogenic diet (KD) can improve the core features of autism spectrum disorders (ASD) in some children, but the effects on the overall metabolism remain unclear. This pilot study investigated the behavioral parameters in relation to blood metabolites and trace elements in a cohort of 10 typically developed controls (TC) and 17 children with ASD at baseline and following 3 months of treatment with a modified KD regimen. A nontargeted, multiplatform metabolomic approach was employed, including gas chromatography-mass spectrometry, 1H nuclear magnetic resonance spectroscopy, and inductively coupled plasma-mass spectrometry. The associations among plasma metabolites, trace elements, and behavior scores were investigated. Employing a combination of metabolomic platforms, 118 named metabolites and 73 trace elements were assessed. Relative to TC, a combination of glutamate, galactonate, and glycerol discriminated ASD with 88% accuracy. ASD had higher concentrations of galactose intermediates, gut microbe-derived trimethylamine N-oxide and N-acetylserotonin, and lower concentrations of 3-hydroxybutyrate and selenium at baseline. Following 3 months of KD intervention, the levels of circulating ketones and acetylcarnitine were increased. KD restored lower selenium levels in ASD to that of controls, and correlation analysis identified a novel negative correlation between the changes in selenium and behavior scores. Based on the different behavior responses to KD, we found that high responders had greater concentrations of 3-hydroxybutyrate and ornithine, with lower galactose. These findings enhance our current understanding of the metabolic derangements present in ASD and may be of utility in predicting favorable responses to KD intervention.


Assuntos
Transtorno do Espectro Autista/dietoterapia , Transtorno do Espectro Autista/metabolismo , Adolescente , Transtorno do Espectro Autista/psicologia , Criança , Pré-Escolar , Dieta Cetogênica , Feminino , Humanos , Isótopos/sangue , Masculino , Espectrometria de Massas/métodos , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Espectroscopia de Prótons por Ressonância Magnética , Selênio/sangue , Oligoelementos/sangue , Resultado do Tratamento
11.
Int J Mol Sci ; 21(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380723

RESUMO

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder that exhibits a common set of behavioral and cognitive impairments. Although the etiology of ASD remains unclear, mitochondrial dysfunction has recently emerged as a possible causative factor underlying ASD. The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that augments mitochondrial function, and has been shown to reduce autistic behaviors in both humans and in rodent models of ASD. The aim of the current study was to examine mitochondrial bioenergetics in the BTBR mouse model of ASD and to determine whether the KD improves mitochondrial function. We also investigated changes in mitochondrial morphology, which can directly influence mitochondrial function. We found that BTBR mice had altered mitochondrial function and exhibited smaller more fragmented mitochondria compared to C57BL/6J controls, and that supplementation with the KD improved both mitochondrial function and morphology. We also identified activating phosphorylation of two fission proteins, pDRP1S616 and pMFFS146, in BTBR mice, consistent with the increased mitochondrial fragmentation that we observed. Intriguingly, we found that the KD decreased pDRP1S616 levels in BTBR mice, likely contributing to the restoration of mitochondrial morphology. Overall, these data suggest that impaired mitochondrial bioenergetics and mitochondrial fragmentation may contribute to the etiology of ASD and that these alterations can be reversed with KD treatment.


Assuntos
Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/metabolismo , Dieta Cetogênica , Suscetibilidade a Doenças , Mitocôndrias/genética , Mitocôndrias/metabolismo , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/dietoterapia , Biomarcadores , Gerenciamento Clínico , Modelos Animais de Doenças , Camundongos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/patologia
12.
J Biol Chem ; 293(9): 3073-3087, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29317503

RESUMO

The gut microbiome contributes to inflammatory bowel disease (IBD), in which bacteria can be present within the epithelium. Epithelial barrier function is decreased in IBD, and dysfunctional epithelial mitochondria and endoplasmic reticulum (ER) stress have been individually associated with IBD. We therefore hypothesized that the combination of ER and mitochondrial stresses significantly disrupt epithelial barrier function. Here, we treated human colonic biopsies, epithelial colonoids, and epithelial cells with an uncoupler of oxidative phosphorylation, dinitrophenol (DNP), with or without the ER stressor tunicamycin and assessed epithelial barrier function by monitoring internalization and translocation of commensal bacteria. We also examined barrier function and colitis in mice exposed to dextran sodium sulfate (DSS) or DNP and co-treated with DAPK6, an inhibitor of death-associated protein kinase 1 (DAPK1). Contrary to our hypothesis, induction of ER stress (i.e. the unfolded protein response) protected against decreased barrier function caused by the disruption of mitochondrial function. ER stress did not prevent DNP-driven uptake of bacteria; rather, specific mobilization of the ATF6 arm of ER stress and recruitment of DAPK1 resulted in enhanced autophagic killing (xenophagy) of bacteria. Of note, epithelia with a Crohn's disease-susceptibility mutation in the autophagy gene ATG16L1 exhibited less xenophagy. Systemic delivery of the DAPK1 inhibitor DAPK6 increased bacterial translocation in DSS- or DNP-treated mice. We conclude that promoting ER stress-ATF6-DAPK1 signaling in transporting enterocytes counters the transcellular passage of bacteria evoked by dysfunctional mitochondria, thereby reducing the potential for metabolic stress to reactivate or perpetuate inflammation.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Feminino , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Permeabilidade , Tunicamicina/farmacologia
13.
Brain ; 141(3): 744-761, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373639

RESUMO

Despite the development of newer anti-seizure medications over the past 50 years, 30-40% of patients with epilepsy remain refractory to treatment. One explanation for this lack of progress is that the current screening process is largely biased towards transmembrane channels and receptors, and ignores intracellular proteins and enzymes that might serve as efficacious molecular targets. Here, we report the development of a novel drug screening platform that harnesses the power of zebrafish genetics and combines it with in vivo bioenergetics screening assays to uncover therapeutic agents that improve mitochondrial health in diseased animals. By screening commercially available chemical libraries of approved drugs, for which the molecular targets and pathways are well characterized, we were able to reverse-identify the proteins targeted by efficacious compounds and confirm the physiological roles that they play by utilizing other pharmacological ligands. Indeed, using an 870-compound screen in kcna1-morpholino epileptic zebrafish larvae, we uncovered vorinostat (Zolinza™; suberanilohydroxamic acid, SAHA) as a potent anti-seizure agent. We further demonstrated that vorinostat decreased average daily seizures by ∼60% in epileptic Kcna1-null mice using video-EEG recordings. Given that vorinostat is a broad histone deacetylase (HDAC) inhibitor, we then delineated a specific subset of HDACs, namely HDACs 1 and 3, as potential drug targets for future screening. In summary, we have developed a novel phenotypic, metabolism-based experimental therapeutics platform that can be used to identify new molecular targets for future drug discovery in epilepsy.


Assuntos
Histona Desacetilases/metabolismo , Convulsões/metabolismo , Convulsões/terapia , Animais , Animais Geneticamente Modificados , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Eletrochoque/efeitos adversos , Embrião não Mamífero , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Inibidores de Histona Desacetilases/uso terapêutico , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/metabolismo , Camundongos , Morfolinos , Pentilenotetrazol/toxicidade , Desempenho Psicomotor/fisiologia , Convulsões/etiologia , Convulsões/genética , Vorinostat/uso terapêutico , Peixe-Zebra
14.
Can J Neurol Sci ; 46(6): 645-652, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31466531

RESUMO

In Canada, recreational use of cannabis was legalized in October 2018. This policy change along with recent publications evaluating the efficacy of cannabis for the medical treatment of epilepsy and media awareness about its use have increased the public interest about this agent. The Canadian League Against Epilepsy Medical Therapeutics Committee, along with a multidisciplinary group of experts and Canadian Epilepsy Alliance representatives, has developed a position statement about the use of medical cannabis for epilepsy. This article addresses the current Canadian legal framework, recent publications about its efficacy and safety profile, and our understanding of the clinical issues that should be considered when contemplating cannabis use for medical purposes.


Énoncé de position quant à l'utilisation du cannabis médical dans le traitement de l'épilepsie. L'utilisation du cannabis à des fins récréatives a été légalisée au Canada en octobre 2018. Parallèlement à ce changement de politique, de récentes publication visant à évaluer l'efficacité du cannabis dans le traitement de l'épilepsie, de même qu'une sensibilisation médiatique accrue en ce qui concerne son utilisation, ont eu pour effet d'augmenter l'intérêt du grand public à son égard. Le Comité médical thérapeutique de la Ligue canadienne contre l'épilepsie (LCCE), de concert avec un groupe multidisciplinaire d'experts et des représentants de l'Alliance canadienne de l'épilepsie, a ainsi élaboré un énoncé de position en ce qui regarde l'utilisation du cannabis médical dans le traitement de l'épilepsie. Cet article entend donc aborder le cadre légal qui prévaut actuellement au Canada et examiner de récentes publications s'étant penchées sur le profil sécuritaire et sur l'efficacité du cannabis. De plus, nous voulons apporter un éclairage au sujet des aspects cliniques dont il faudrait tenir compte au moment d'envisager l'utilisation du cannabis à des fins médicales.


Assuntos
Epilepsia/tratamento farmacológico , Maconha Medicinal/uso terapêutico , Canadá , Humanos
15.
Epilepsia ; 59(8): 1527-1539, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30009381

RESUMO

OBJECTIVES: Circadian rhythms are affected in many neurological disorders. Although sleep disturbances are known in epilepsy, data on circadian rhythm disturbances in epilepsy are sparse. Here, we examined diurnal and circadian rest-activity and sleep-wake patterns in Kcna1-null mice, which exhibit spontaneous recurrent seizures and are a model of sudden unexpected death in epilepsy. Furthermore, we sought to determine whether seizures or aberrant oscillation of core clock genes and a regulator, sirtuin 1 (Sirt1), is associated with disrupted rhythms. METHODS: We used passive infrared actigraphy to assess rest-activity patterns, electroencephalography for seizure and sleep analysis, and reverse transcription polymerase chain reaction and Western blotting to evaluate expression of clock genes and Sirt1 in Kcna1-null and wild-type mice. RESULTS: Epileptic Kcna1-null animals have disrupted diurnal and circadian rest-activity patterns, tending to exhibit prolonged circadian periods. Electroencephalographic analysis confirmed disturbances in sleep architecture, with more time spent awake and less asleep. Although all epileptic mice manifested disrupted diurnal and circadian rest-activity patterns, we found no correlation between actual seizure burden and degree of sleep disruption. However, we found attenuated oscillations of several clock genes (ie, Clock, Bmal1, Per1, and Per2) and diurnal Sirt1 mRNA in the anterior hypothalamus. SIGNIFICANCE: Attenuated oscillation of several core clock genes correlates with, and may underlie, aberrant diurnal and circadian rest-activity and sleep-wake patterns observed in Kcna1-null mice. This could contribute to late complications in epilepsy, such as sudden unexpected death in epilepsy. Sirt1 may represent a useful therapeutic target for rescuing circadian clock gene rhythmicity and sleep patterns in epilepsy.


Assuntos
Proteínas CLOCK/metabolismo , Morte Súbita , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Regulação da Expressão Gênica/genética , Sirtuína 1/metabolismo , Actigrafia , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Epilepsia/genética , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro , Sono/genética , Vigília/genética
16.
Epilepsia ; 59(7): 1316-1326, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29858515

RESUMO

OBJECTIVE: In different cohorts, 5%-30% of individuals with autism spectrum disorder (ASD) also have epilepsy. The high co-occurrence of these disorders suggests that a common mechanistic link may exist. The underlying pathophysiology of this comorbidity remains unknown. To investigate the mechanism(s) involved in the pathogenesis of ASD and epilepsy, we developed and validated a novel mouse model that concurrently exhibits hallmark features of both disorders. METHODS: We utilized inbred BTBR T+ Itpr3tf/J (BTBR) mice that exhibit the core behavioral characteristics of ASD (ie, impaired sociability, altered vocalizations, and restricted interests). BTBR mice received a lipopolysaccharide (LPS) or sterile saline injection at postnatal day (P)7, P14, or P21. Cytokine expression was analyzed for interleukin (IL)-1ß, IL-10, IL-6, and tumor necrosis factor α in brain tissue of P7 and adult BTBR mice. Adult BTBR mice were behaviorally analyzed for seizure susceptibility, sociability, communication deficits, and motor stereotypies, and monitored using chronic video-electroencephalography (EEG). RESULTS: Adult male and female BTBR mice treated at P7-P14 with LPS were more sensitive to pentylenetetrazol-induced seizures than saline-treated controls. ASD-like behaviors and hippocampal cytokine levels were unchanged between P7 LPS-treated BTBR mice and controls. EEG recordings from the dorsal hippocampus revealed a significant increase in number and frequency of seizures over the 4-week recording period (P60-P88) in BTBR mice postnatally treated with LPS at P7. These results indicate the presence of a comorbid epileptic phenotype in BTBR mice. SIGNIFICANCE: These findings suggest that an early postnatal immune challenge can increase brain excitability in adult BTBR mice and reveal an underlying epilepsy phenotype. This novel animal model may enable the elucidation of specific molecular alterations that are associated with the concurrent presentation of ASD and epilepsy, which could facilitate the development of targeted therapies for individuals affected by this comorbidity.


Assuntos
Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/fisiopatologia , Modelos Animais de Doenças , Encefalite/complicações , Encefalite/fisiopatologia , Epilepsia/complicações , Epilepsia/fisiopatologia , Animais , Córtex Cerebral/fisiopatologia , Comorbidade , Citocinas/sangue , Feminino , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Fenótipo , Gravidez
17.
J Neurosci ; 36(24): 6538-52, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307241

RESUMO

UNLABELLED: How the integrity of laminar structures in the postnatal brain is maintained impacts neuronal functions. Ndel1, the mammalian homolog of NuDE from the filamentous fungus Aspergillus nidulans, is an atypical microtubule (MT)-associated protein that was initially investigated in the contexts of neurogenesis and neuronal migration. Constitutive knock-out mice for Ndel1 are embryonic lethal, thereby necessitating the creation a conditional knock-out to probe the roles of Ndel1 in postnatal brains. Here we report that CA1 pyramidal neurons from mice postnatally lacking Ndel1 (Ndel1 conditional knock-out) exhibit fragmented MTs, dendritic/synaptic pathologies, are intrinsically hyperexcitable and undergo dispersion independently of neuronal migration defect. Secondary to the pyramidal cell changes is the decreased inhibitory drive onto pyramidal cells from interneurons. Levels of the glycoprotein Reelin that regulates MTs, neuronal plasticity, and cell compaction are significantly reduced in hippocampus of mutant mice. Strikingly, a single injection of Reelin into the hippocampus of Ndel1 conditional knock-out mice ameliorates ultrastructural, cellular, morphological, and anatomical CA1 defects. Thus, Ndel1 and Reelin contribute to maintain postnatal CA1 integrity. SIGNIFICANCE STATEMENT: The significance of this study rests in the elucidation of a role for Nde1l and Reelin in postnatal CA1 integrity using a new conditional knock-out mouse model for the cytoskeletal protein Ndel1, one that circumvents the defects associated with neuronal migration and embryonic lethality. Our study serves as a basis for understanding the mechanisms underlying postnatal hippocampal maintenance and function, and the significance of decreased levels of Ndel1 and Reelin observed in patients with neurological disorders.


Assuntos
Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/ultraestrutura , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/farmacologia , Proteínas de Ciclo Celular/genética , Dendritos/metabolismo , Dendritos/ultraestrutura , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotransmissores/farmacologia , Proteína Reelina , Serina Endopeptidases/genética , Serina Endopeptidases/farmacologia , Coloração pela Prata , Sinapses/metabolismo , Sinapses/ultraestrutura
18.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2274-2281, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28502704

RESUMO

BACKGROUND: Protein O-linked-ß-N-acetyl glucosamine (O-GlcNAc) is a post-translational modification to Ser/Thr residues that integrates energy supply with demand. Abnormal O-GlcNAc patterning is evident in several neurological disease states including epilepsy, Alzheimer's disease and autism spectrum disorder (ASD). A potential treatment option for these disorders includes the high-fat, low-carbohydrate, ketogenic diet (KD). The goal of this study was to determine whether the KD induces changes in O-GlcNAc in the BTBRT+tf/j (BTBR) mouse model of ASD. METHODS: Juvenile male (5weeks), age-matched C57 or BTBR mice consumed a chow diet (13% kcal fat) or KD (75% kcal fat) for 10-14days. Following these diets, brain (prefrontal cortex) and liver were examined for gene expression levels of key O-GlcNAc mediators, global and protein specific O-GlcNAc as well as indicators of energy status. RESULTS: The KD reduced global O-GlcNAc in the livers of all animals (p<0.05). Reductions were likely mediated by lower protein levels of O-GlcNAc transferase (OGT) and increased O-GlcNAcase (OGA) (p<0.05). In contrast, no differences in global O-GlcNAc were noted in the brain (p>0.05), yet OGT and OGA expression (mRNA) were elevated in both C57 and BTBR animals (p<0.05). CONCLUSIONS: The KD has tissue specific impacts on O-GlcNAc. Although levels of O-GlcNAc play an important role in neurodevelopment, levels of this modification in the juvenile mouse brain were stable with the KD despite large fluctuations in energy status. This suggests that it is unlikely that the KD exerts it therapeutic benefit in the BTBR model of ASD by O-GlcNAc related pathways.


Assuntos
Acetilglucosamina/metabolismo , Transtorno Autístico/metabolismo , Dieta Cetogênica , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/metabolismo , Processamento de Proteína Pós-Traducional , Acetilglucosamina/genética , Animais , Transtorno Autístico/genética , Transtorno Autístico/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/patologia
19.
Epilepsia ; 58 Suppl 3: 69-82, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28675558

RESUMO

In this exciting era, we are coming closer and closer to bringing an anti-inflammatory therapy to the clinic for the purpose of seizure prevention, modification, and/or suppression. At present, it is unclear what this approach might entail, and what form it will take. Irrespective of the therapy that ultimately reaches the clinic, there will be some commonalities with regard to clinical trials. A number of animal models have now been used to identify inflammation as a major underlying mechanism of both chronic seizures and the epileptogenic process. These models have demonstrated that specific anti-inflammatory treatments can be effective at both suppressing chronic seizures and interfering with the process of epileptogenesis. Some of these have already been evaluated in early phase clinical trials. It can be expected that there will soon be more clinical trials of both "conventional, broad spectrum" anti-inflammatory agents and novel new approaches to utilizing specific anti-inflammatory therapies with drugs or other therapeutic interventions. A summary of some of those approaches appears below, as well as a discussion of the issues facing clinical trials in this new domain.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/imunologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo
20.
Epilepsia ; 58(4): 617-626, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28230232

RESUMO

OBJECTIVES: Carisbamate (CRS) is a novel monocarbamate compound that possesses antiseizure and neuroprotective properties. However, the mechanisms underlying these actions remain unclear. Here, we tested both direct and indirect effects of CRS on several cellular systems that regulate intracellular calcium concentration [Ca2+ ]i . METHODS: We used a combination of cellular electrophysiologic techniques, as well as cell viability, Store Overload-Induced Calcium Release (SOICR), and mitochondrial functional assays to determine whether CRS might affect [Ca2+ ]i levels through actions on the endoplasmic reticulum (ER), mitochondria, and/or T-type voltage-gated Ca2+ channels. RESULTS: In CA3 pyramidal neurons, kainic acid induced significant elevations in [Ca2+ ]i and long-lasting neuronal hyperexcitability, both of which were reversed in a dose-dependent manner by CRS. Similarly, CRS suppressed spontaneous rhythmic epileptiform activity in hippocampal slices exposed to zero-Mg2+ or 4-aminopyridine. Treatment with CRS also protected murine hippocampal HT-22 cells against excitotoxic injury with glutamate, and this was accompanied by a reduction in [Ca2+ ]i . Neither kainic acid nor CRS alone altered the mitochondrial membrane potential (ΔΨ) in intact, acutely isolated mitochondria. In addition, CRS did not affect mitochondrial respiratory chain activity, Ca2+ -induced mitochondrial permeability transition, and Ca2+ release from the ER. However, CRS significantly decreased Ca2+ flux in human embryonic kidney tsA-201 cells transfected with Cav 3.1 (voltage-dependent T-type Ca2+ ) channels. SIGNIFICANCE: Our data indicate that the neuroprotective and antiseizure activity of CRS likely results in part from decreased [Ca2+ ]i accumulation through blockade of T-type Ca2+ channels.


Assuntos
Anticonvulsivantes/farmacologia , Canais de Cálcio Tipo T/metabolismo , Carbamatos/farmacologia , Neurônios/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo T/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Células HEK293 , Hipocampo/citologia , Humanos , Técnicas In Vitro , Ácido Caínico/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Espectrometria de Fluorescência , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA