Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurosci ; 43(3): 433-446, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36639913

RESUMO

REM sleep is important for the processing of emotional memories, including fear memories. Rhythmic interactions, especially in the theta band, between the medial prefrontal cortex (mPFC) and limbic structures are thought to play an important role, but the ways in which memory processing occurs at a mechanistic and circuits level are largely unknown. To investigate how rhythmic interactions lead to fear extinction during REM sleep, we used a biophysically based model that included the infralimbic cortex (IL), a part of the mPFC with a critical role in suppressing fear memories. Theta frequency (4-12 Hz) inputs to a given cell assembly in IL, representing an emotional memory, resulted in the strengthening of connections from the IL to the amygdala and the weakening of connections from the amygdala to the IL, resulting in the suppression of the activity of fear expression cells for the associated memory. Lower frequency (4 Hz) theta inputs effected these changes over a wider range of input strengths. In contrast, inputs at other frequencies were ineffective at causing these synaptic changes and did not suppress fear memories. Under post-traumatic stress disorder (PTSD) REM sleep conditions, rhythmic activity dissipated, and 4 Hz theta inputs to IL were ineffective, but higher-frequency (10 Hz) theta inputs to IL induced changes similar to those seen with 4 Hz inputs under normal REM sleep conditions, resulting in the suppression of fear expression cells. These results suggest why PTSD patients may repeatedly experience the same emotionally charged dreams and suggest potential neuromodulatory therapies for the amelioration of PTSD symptoms.SIGNIFICANCE STATEMENT Rhythmic interactions in the theta band between the mPFC and limbic structures are thought to play an important role in processing emotional memories, including fear memories, during REM sleep. The infralimbic cortex (IL) in the mPFC is thought to play a critical role in suppressing fear memories. We show that theta inputs to the IL, unlike other frequency inputs, are effective in producing synaptic changes that suppress the activity of fear expression cells associated with a given memory. Under PTSD REM sleep conditions, lower-frequency (4 Hz) theta inputs to the IL do not suppress the activity of fear expression cells associated with the given memory but, surprisingly, 10 Hz inputs do. These results suggest potential neuromodulatory therapies for PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Sono REM , Medo , Extinção Psicológica , Emoções
2.
PLoS Comput Biol ; 8(5): e1002524, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22654655

RESUMO

Pain caused by nerve injury (i.e. neuropathic pain) is associated with development of neuronal hyperexcitability at several points along the pain pathway. Within primary afferents, numerous injury-induced changes have been identified but it remains unclear which molecular changes are necessary and sufficient to explain cellular hyperexcitability. To investigate this, we built computational models that reproduce the switch from a normal spiking pattern characterized by a single spike at the onset of depolarization to a neuropathic one characterized by repetitive spiking throughout depolarization. Parameter changes that were sufficient to switch the spiking pattern also enabled membrane potential oscillations and bursting, suggesting that all three pathological changes are mechanistically linked. Dynamical analysis confirmed this prediction by showing that excitability changes co-develop when the nonlinear mechanism responsible for spike initiation switches from a quasi-separatrix-crossing to a subcritical Hopf bifurcation. This switch stems from biophysical changes that bias competition between oppositely directed fast- and slow-activating conductances operating at subthreshold potentials. Competition between activation and inactivation of a single conductance can be similarly biased with equivalent consequences for excitability. "Bias" can arise from a multitude of molecular changes occurring alone or in combination; in the latter case, changes can add or offset one another. Thus, our results identify pathological change in the nonlinear interaction between processes affecting spike initiation as the critical determinant of how simple injury-induced changes at the molecular level manifest complex excitability changes at the cellular level. We demonstrate that multiple distinct molecular changes are sufficient to produce neuropathic changes in excitability; however, given that nerve injury elicits numerous molecular changes that may be individually sufficient to alter spike initiation, our results argue that no single molecular change is necessary to produce neuropathic excitability. This deeper understanding of degenerate causal relationships has important implications for how we understand and treat neuropathic pain.


Assuntos
Potenciais de Ação , Relógios Biológicos , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Neuralgia/fisiopatologia , Neurônios Aferentes , Animais , Simulação por Computador , Humanos , Plasticidade Neuronal
3.
Phys Lett A ; 372(30): 5017-5025, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32288057

RESUMO

The time course of an epidemic can be modeled using the differential equations that describe the spread of disease and by dividing people into "patches" of different sizes with the migration of people between these patches. We used these multi-patch, flux-based models to determine how the time course of infected and susceptible populations depends on the disease parameters, the geometry of the migrations between the patches, and the addition of infected people into a patch. We found that there are significantly longer lived transients and additional "ancillary" epidemics when the reproductive rate R is closer to 1, as would be typical of SARS (Severe Acute Respiratory Syndrome) and bird flu, than when R is closer to 10, as would be typical of measles. In addition we show, both analytical and numerical, how the time delay between the injection of infected people into a patch and the corresponding initial epidemic that it produces depends on R.

4.
Front Cell Neurosci ; 8: 452, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25620913

RESUMO

Neurons rely on action potentials, or spikes, to encode information. But spikes can encode different stimulus features in different neurons. We show here through simulations and experiments how neurons encode the integral or derivative of their input based on the distinct tuning properties conferred upon them by subthreshold currents. Slow-activating subthreshold inward (depolarizing) current mediates positive feedback control of subthreshold voltage, sustaining depolarization and allowing the neuron to spike on the basis of its integrated stimulus waveform. Slow-activating subthreshold outward (hyperpolarizing) current mediates negative feedback control of subthreshold voltage, truncating depolarization and forcing the neuron to spike on the basis of its differentiated stimulus waveform. Depending on its direction, slow-activating subthreshold current cooperates or competes with fast-activating inward current during spike initiation. This explanation predicts that sensitivity to the rate of change of stimulus intensity differs qualitatively between integrators and differentiators. This was confirmed experimentally in spinal sensory neurons that naturally behave as specialized integrators or differentiators. Predicted sensitivity to different stimulus features was confirmed by covariance analysis. Integration and differentiation, which are themselves inverse operations, are thus shown to be implemented by the slow feedback mediated by oppositely directed subthreshold currents expressed in different neurons.

5.
Brain Connect ; 1(1): 73-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22432956

RESUMO

Spontaneously emerging coherent fluctuations have been long observed in electrophysiological and functional magnetic resonance imaging studies. These dynamics have been identified in multiple brain areas in the 1-100 and < 0.1 Hz frequency ranges spanning neurophysiological oscillations and blood oxygen level dependent (BOLD) signals, respectively. In this article, we demonstrate that transient neural synchronization between two sites may lead to the emergence of ultra-slow frequency fluctuations in the BOLD signal at another (third) site. Starting with a network model comprised of three neural oscillators, we illustrate the critical role of time delay and coupling strength in generating these slow coherent fluctuations as a function of intermittently occurring neural coherence. When extending the network toward biologically realistic primate connectivity, we find that the BOLD activation patterns arise from neurophysiological coherence, especially among medial cortical areas. This finding demonstrates a network-level mechanism whereby the BOLD activity at a given region is critically influenced by the neuroelectric synchronization patterns of other regions in the network.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/metabolismo , Sincronização Cortical/fisiologia , Redes Neurais de Computação , Oxigênio/sangue , Encéfalo/metabolismo , Previsões , Humanos , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA