Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Plant J ; 118(5): 1668-1688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38407828

RESUMO

Bioenergy sorghum is a low-input, drought-resilient, deep-rooting annual crop that has high biomass yield potential enabling the sustainable production of biofuels, biopower, and bioproducts. Bioenergy sorghum's 4-5 m stems account for ~80% of the harvested biomass. Stems accumulate high levels of sucrose that could be used to synthesize bioethanol and useful biopolymers if information about cell-type gene expression and regulation in stems was available to enable engineering. To obtain this information, laser capture microdissection was used to isolate and collect transcriptome profiles from five major cell types that are present in stems of the sweet sorghum Wray. Transcriptome analysis identified genes with cell-type-specific and cell-preferred expression patterns that reflect the distinct metabolic, transport, and regulatory functions of each cell type. Analysis of cell-type-specific gene regulatory networks (GRNs) revealed that unique transcription factor families contribute to distinct regulatory landscapes, where regulation is organized through various modes and identifiable network motifs. Cell-specific transcriptome data was combined with known secondary cell wall (SCW) networks to identify the GRNs that differentially activate SCW formation in vascular sclerenchyma and epidermal cells. The spatial transcriptomic dataset provides a valuable source of information about the function of different sorghum cell types and GRNs that will enable the engineering of bioenergy sorghum stems, and an interactive web application developed during this project will allow easy access and exploration of the data (https://mc-lab.shinyapps.io/lcm-dataset/).


Assuntos
Biocombustíveis , Parede Celular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Caules de Planta , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Perfilação da Expressão Gênica
2.
Sci Rep ; 14(1): 17337, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39068293

RESUMO

The continuously reinforced concrete pavement (CRCP) system grapples with challenges such as non-uniform transverse crack patterns and the need for substantial reinforcement. Field research on the Belgian CRCP sections along motorway E313 indicates that active cracking induced by partial surface saw-cuts consistently leads to transverse crack patterns. This study introduces an innovative modification to the CRCP: the actively reinforced concrete pavement design (ARCP). The ARCP leverages partial surface saw-cuts to reduce reinforcement needs by replacing continuous-length steel bars with partial-length counterparts. The main objective of the present study is to develop a 3D finite element (FE) model capturing the active cracking behavior of ARCP under realistic external temperature variations. Comparative analysis with CRCP considers early-age crack patterns, crack strain development, and the distribution of maximum steel stress for different steel ratios (0.67%, 0.75%, and 0.85%). FE simulation results align with field data, indicating that ARCP exhibits similar early-age cracking behavior to CRCP but with a significant 24 to 42% reduction in total reinforcement. This innovation presents a promising avenue for addressing CRCP challenges while optimizing material usage in pavement construction.

3.
Materials (Basel) ; 15(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35591556

RESUMO

In the past, many studies have been conducted on the optimization of reinforced concrete (RC) structures. These studies have demonstrated the effectiveness of different optimization techniques to obtain an economical design. However, the use of optimization techniques to an obtain economical design is not so practical due to the difficulty in applying most of the optimization techniques to achieve an optimal solution. The RC beam is one of the most common structural elements encountered by a practising design engineer. The current study is designed to highlight the potential of the Solver tool in MS Excel as an easy-to-use option for optimizing the design of simply supported RC beams. A user-friendly interface was developed in a spreadsheet in which beam design parameters from a typical design can be entered and an economical design can be obtained using the Evolutionary Algorithm available in the MS Excel Solver tool. To demonstrate the effectiveness of the developed optimization tool, three examples obtained from the literature have been optimized. The results showed that up to 24% economical solution can be obtained by keeping the same material strengths that were assumed in the original design. However, if material strength is also considered as a variable, up to 44% of the economical solution can be obtained. A parametric study was also conducted to investigate the effect of different design variables on the economical design of simply supported RC beams and to derive useful rules of thumb for their design and proportioning, with the objective of cost minimization. The results of the parametric study suggest that the grade of the reinforcing steel is one of the most influential factors that affect the cost of simply supported RC beams. Practicing engineers can use the trends derived from this research to further refine their optimal designs.

4.
ACS Synth Biol ; 9(5): 1069-1082, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32347714

RESUMO

Comparative and evolutionary analyses of metabolic networks have a wide range of applications, ranging from research into metabolic evolution through to practical applications in drug development, synthetic biology, and biodegradation. We present MAPPS: Metabolic network Analysis and Pathway Prediction Server (https://mapps.lums.edu.pk), a web-based tool to study functions and evolution of metabolic networks using traditional and 'omics data sets. MAPPS provides diverse functionalities including an interactive interface, graphical visualization of results, pathway prediction and network comparison, identification of potential drug targets, in silico metabolic engineering, host-microbe interactions, and ancestral network building. Importantly, MAPPS also allows users to upload custom data, thus enabling metabolic analyses on draft and custom genomes, and has an 'omics pipeline to filter pathway results, making it relevant in today's postgenomic era.


Assuntos
Redes e Vias Metabólicas , Interface Usuário-Computador , Interações Hospedeiro-Parasita , Internet , Engenharia Metabólica
5.
Microbiol Res ; 174: 56-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25946329

RESUMO

Bordetella pertussis, the causative agent of whooping cough, attaches to mucosal surface in upper respiratory tract, where it produces a variety of surface associated and secreted autotransporter molecules among others. In this study we have cloned newly identified member of autotransporter family BapC (B. pertussis autotransporter protein C); expressed it in Escherichia coli and characterized it for its different properties. We have also raised antisera to BapC protein; the antisera were used in immunofluorescence assay to determine the surface association of the protein. Results suggest that BapC in B. pertussis Taberman parent is surface exposed when compared with the respective BapC mutant. The neutralizing effect of anti-BapC serum was also evaluated in the presence of active complement proteins and results suggest that antiserum can potentiate the killing of B. pertussis cells in the presence of added source of complement. Structure of the protein was also studied, both α and ß domains of the protein were modeled, ß domain exhibits typical transmembrane ß-barrel porin topology whereas α domain behaves as a characteristic bacterial autotransporter passenger domain.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/fisiologia , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo , Proteínas de Bactérias/química , Atividade Bactericida do Sangue , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Modelos Moleculares , Conformação Proteica , Sistemas de Secreção Tipo V/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA