Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 59(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37629700

RESUMO

Background: Noninvasive ventilation (NIV) provides positive pressure through different interfaces. A multifunctional full-face mask prototype was developed to provide NIV from three sources: ICU ventilators, portable ventilators, and high-flow medical gas pipeline systems. This study aimed to evaluate the usability of this prototype mask. Methods: This was a quantitative experimental study, conducted in two phases: the development of a full-face mask prototype NIV interface, and the evaluation of its usability by health professionals (evaluators) using a heuristic approach. The Wolf Mask prototype is a multifunctional full-face mask that makes it possible to deliver positive pressure from three different sources: microprocessor-controlled ICU ventilators, portable ventilators with single-limb circuits, and high-flow medical gas. The evaluation was conducted in three stages: presentation of the prototype to the evaluators; skills testing via simulation in a clinical environment; and a review of skills. Results: The prototype was developed by a multidisciplinary team and patented in Brazil. The evaluators were 10 health professionals specializing in NIV. Seven skills related to handling the prototype were evaluated. Three of the ten evaluators called for (non-urgent) changes to improve recognition of the components of the prototype. Only one evaluator called for (non-urgent) changes to improve recognition of the pieces, assembly, and checking the mask. Conclusions: The newly developed multifunctional full-face mask prototype demonstrated excellent usability for providing noninvasive ventilation from multiple sources. Minor modifications may further improve the design.


Assuntos
Ventilação não Invasiva , Máscaras , Respiração Artificial , Brasil , Simulação por Computador
2.
AAPS PharmSciTech ; 23(6): 212, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918472

RESUMO

Squamous cell carcinoma (SCC) represents 20% of cases of non-melanoma skin cancer, and the most common treatment is the removal of the tumor, which can leave large scars. 5-Fluorouracil (5FU) is a drug used in the treatment of SCC, but it is highly hydrophilic, resulting in poor skin penetration in topical treatment. Some strategies can be used to increase the cutaneous penetration of the drug, such as the combination of liposomes containing penetration enhancers, for instance, surfactants, associated with the use of microneedling. Thus, the present work addresses the development of liposomes with penetration enhancers, such as sorbtitan monolaurate, span 20, for topical application of 5-FU and associated or not with the use of microneedling for skin delivery. Liposomes were developed using the lipid film hydration, resulting in particle size, polydispersity index, zeta potential, and 5-FU encapsulation efficiency of 88.08 nm, 0.169, -12.3 mV, and 50.20%, respectively. The presence of span 20 in liposomes potentiated the in vitro release of 5-FU. MTT assay was employed for cytotoxicity evaluation and the IC50 values were 0.62, 30.52, and 24.65 µM for liposomes with and without span 20 and 5-FU solution, respectively after 72-h treatment. Flow cytometry and confocal microscopy analysis evidenced high cell uptake for the formulations. In skin penetration studies, a higher concentration of 5-FU was observed in the epidermis + dermis, corresponding to 1997.71, 1842.20, and 2585.49 ng/cm2 in the passive penetration and 3214.07, 2342.84, and 5018.05 ng/cm2 after pretreatment with microneedles, for solution, liposome without and with span 20, respectively. Therefore, herein, we developed a nanoformulation for 5-FU delivery, with suitable physicochemical characteristics, potent skin cancer cytotoxicity, and cellular uptake. Span 20-based liposomes increased the skin penetration of 5-FU in association of microneedling. Altogether, the results shown herein evidenced the potential of the liposome containing span 20 for topical delivery of 5-FU.


Assuntos
Fluoruracila , Neoplasias Cutâneas , Hexoses , Humanos , Lipossomos/metabolismo , Tamanho da Partícula , Pele/metabolismo , Absorção Cutânea , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo
3.
Phys Chem Chem Phys ; 23(48): 27484-27497, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34873605

RESUMO

We report on single- and double-charge photofragment formation by synchrotron radiation, following C 1s core excitation and ionization and Cl 2p inner excitation and ionization of chlorobenzene, C6H5Cl. From a comparison of experimental near-edge X-ray absorption fine structure spectra and theoretical ab initio calculations, the nature of various core and inner shell transitions of the molecule and pure atomic features were identified. To shed light on the normal Auger processes following excitation or ionization of the molecule at the Cl 2p or C 1s sites, we addressed the induced ionic species formation. With energy resolved electron spectra and ion time-of-flight spectra coincidence measurements, the ionic species were correlated with binding energy regions and initial states of vacancies. We explored the formation of the molecular dication C6H5Cl2+, the analogue benzene dication C6H42+, and the singly charged species produced by single loss of a carbon atom, C5HnCl+. The appearance and intensities of the spectral features associated with these ionic species are shown to be strongly site selective and dependent on the energy ranges of the Auger electron emission. Unexpected intensities for the analogue double charged benzene C6H42+ ion were observed with fast Auger electrons. The transitions leading to C6H5Cl2+ were identified from the binding energy representation of high resolution electron energy spectra. Most C6H5Cl2+ ions decay into two singly charged moieties, but intermediate channels are opened leading to other heavy dicationic species, C6H42+ and C6H4Cl2+, the channel leading to the first of these being much more favored than the other.

4.
An Acad Bras Cienc ; 94(1): e20191320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34787289

RESUMO

The present study was based on the analysis of 10,467 trawls of the industrial piramutaba (Brachyplatystoma vaillantii) fishing fleet of the Brazilian state of Pará, which were mapped by onboard GPS loggers (between February 2008 and September 2011) and the PREPS data from 40 vessels which were tracked by this system between 2008 and 2011. The variation in the mean monthly CPUE, based on Lomb's periodogram, revealed a well-defined and constant cycle with a duration of approximately one year. Three environmental factors influenced this cycle. The El Niño 3.4 index had a negative correlation with the CPUE of the piramutaba fishery, with a time lag of 15 months, while monthly rainfall and the mean discharge of the Amazon River correlated strongly (r=0.89 and 0.87, respectively; p<0.001) with the CPUE, with time lags of 12 and 11 months, respectively. The spatiotemporal analysis of the distribution of the activity of the piramutaba fishing fleet indicated that the most intense area of operation of the fleet lies between latitudes 00º N and 02° N, and longitudes 047º40' W and 049º40' W. This area was divided into four geographic quadrants, although fishery operations were concentrated in only three of these quadrants. The study proposed a quadrimester fishing cycle with zoning in three of the quadrants, where fishing would be permitted for four months (occupation period), followed by an 8-month rest period for the recuperation of stocks, aiming at the sustainability of this fishing exploration.


Assuntos
Peixes-Gato , Pesqueiros , Animais , Brasil , Conservação dos Recursos Naturais , Rios
5.
Microb Pathog ; 149: 104513, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950640

RESUMO

Resistance to antimicrobials is a challenging issue that complicates the treatment of infections caused by bacteria and fungi, thus requiring new therapeutic options. Oncocalyxone A, a benzoquinone obtained from Auxemma oncocalyx (Allem) Taub has several biological effects; however, there is no data on its antimicrobial action. In this study, its antimicrobial and antibiofilm activities were evaluated against bacteria and fungi of clinical interest. Strains of Gram-positive and Gram-negative bacteria, and filamentous fungi and yeasts were selected to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of oncocalyxone A. The antibacterial effect of oncocalyxone A was studied using survival curves, atomic force microscopy (AFM), and the involvement of oxidative stress. We examined the inhibitory action of the molecule on biofilm formation and its hemolytic activity against human erythrocytes. Our results showed that among the strains tested, Staphylococcus epidermidis was highly sensitive to the action of oncocalyxone A, with an MIC of 9.43 µg/mL. In most bacterial strains analyzed, a bacteriostatic effect was observed, though the molecule showed no antifungal activity. Antibiofilm activity was observed against the methicillin-resistant S. aureus bacteria. Additionally, results from atomic force microscopy imaging showed that oncocalyxone A significantly altered bacterial morphology. Further, oncocalyxone A showed no hemolytic activity at concentrations ≥151 µg/mL. Together, our results demonstrate the antibacterial and antibiofilm potential of oncocalyxone A, indicating its therapeutic potential against bacterial resistance.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antraquinonas , Antibacterianos/farmacologia , Benzoquinonas/farmacologia , Biofilmes , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana
6.
Phys Chem Chem Phys ; 22(43): 25380-25389, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33140776

RESUMO

Defect complexes play critical roles in the dynamics of water molecules in photoelectrochemical cell devices. For the specific case of hematite (α-Fe2O3), iron and oxygen vacancies are said to mediate the water splitting process through the localization of optically-derived charges. Using first-principles methods based on density-functional theory we show that both iron and oxygen vacancies can be observed at the surface. For an oxygen-rich environment, usually under wet conditions, the charged iron vacancies should be more frequent. As sea water would be an ideal electrolyte for this kind of device, we have also analyzed the effect of additional chlorine adsorption on this surface. While the chlorine adatom kills the charged oxygen vacancies, entering the void sites, it will not react with the iron vacancies, keeping them active during water splitting processes.

7.
J Phys Chem A ; 124(44): 9261-9271, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33079556

RESUMO

In this work, we report a systematic search of metastable C6Hn2+ (n = 1-6) dications from electron impact time-of-flight measurements of several benzene derivatives in combination with global minimum search based on the genetic algorithm. Our theoretical calculations reveal that the C6Hn2+ (n < 6) global minimum structures are completely different from that of the benzene dication, featuring linear carbon chains and/or cyclopropenylium moieties. Experimentally, the doubly charged species were investigated for a wide range of electron impact energies, from 20 to 2000 eV, for benzene and several monosubstituted compounds containing either electron-withdrawing or -donating groups. Furthermore, the C6Hn2+ production, evaluated from the yields of the dications with respect to that of the parent ion (or parent dication), was compared to those obtained from charge exchange in the doubly charged 2E spectra and electron impact experiments available in the literature. The yields of the long-lived benzene dications were contrasted to those analogues formed in chlorobenzene. Moreover, the formation of C6Hn2+ species is strongly dependent on the nature of substituent groups, with electron-withdrawing ones favoring the dication formation.

8.
J Phys Chem A ; 124(34): 6845-6855, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32702984

RESUMO

Ionization and fragmentation pathways induced by ionizing agents are key to understanding the formation of complex molecules in astrophysical environments. Acetonitrile (CH3CN), the simplest organic nitrile, is an important molecule present in the interstellar medium. In this work, DFT and MP2 calculations were performed in order to obtain the low energy structures of the most relevant cations formed from electron-stimulated ion desorption of CH3CN ices. Selected reaction pathways and spectroscopic properties were also calculated. Our results indicate that the most stable acetonitrile cation structure is CH2CNH+ and that hydrogenation can occur successively without isomerization steps until its complete saturation. Moreover, the stability of distinct cluster families formed from the interaction of acetonitrile with small fragments, such as CHn+, C2Hn+, and CHnCNH+, is discussed in terms of their respective binding energies. Some of these molecular clusters are stabilized by hydrogen bonds, leading to species whose infrared features are characterized by a strong redshift of the N-H stretching mode. Finally, the rotational spectra of CH3CN and protonated acetonitrile, CH3CNH+, were simulated using distinct computational protocols based on DFT, MP2, and CCSD(T) considering centrifugal distortion, vibrational-rotational coupling, and vibrational anharmonicity corrections. By adopting an empirical scaling procedure for calculating spectroscopic parameters, we were able to estimate the rotational frequencies of CH3CNH+ with an expected average error below 1 MHz for J values up to 10.

9.
J Phys Chem A ; 123(42): 9149-9157, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31545607

RESUMO

A commercial fast pyrolysis probe coupled with a high-resolution tandem mass spectrometer was employed to identify the initial reactions and products of fast pyrolysis of xylobiose and xylotriose, model compounds of xylans. Fragmentation of the reducing end by loss of an ethenediol molecule via ring-opening and retro-aldol condensation was found to be the dominant pyrolysis pathway for xylobiose, and the structure of the product-ß-d-xylopyranosylglyceraldehyde-was identified by comparing collision-activated dissociation of the ionized product and an ionized authentic compound. This intermediate can undergo further decomposition via the loss of formaldehyde to form ß-d-xylopyranosylglycolaldehyde. In addition, the mechanisms of reactions leading to the loss of a water molecule or dissociation of the glycosidic linkages were explored computationally. These reactions are proposed to occur via pinacol ring contraction and/or Maccoll elimination mechanisms.

10.
J Phys Chem A ; 123(7): 1389-1398, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30673243

RESUMO

An experimental and theoretical study of the photoinduced homolysis of the carbon-chlorine bond in an ice matrix of chlorobenzene is presented. A condensed chlorobenzene film has been grown in situ and near edge X-ray fine structure (NEXAFS) spectra were collected after exposing the condensed film to a monochromatic photon beam centered at the 2822 eV resonant excitation of chlorine and at 2850 eV. The photoabsorption to the Cl 1s → σ* and Cl 1s → π* states has been measured and the hypothesis of free radical coupling reactions was investigated via time-dependent density functional theory (TD-DFT) and complete active space self-consistent field (CASSCF) calculations. Also, potential energy pathways to the C-Cl cleavage have been obtained at the CASSCF level to the Cl 1s → σ*, 1s → π*, and 1s → ∞ states. A strong dissociative character was only found for the Cl 1s → σ* resonance.

11.
J Am Chem Soc ; 140(44): 14870-14877, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30351929

RESUMO

Supported multimetallic nanoparticles (NPs) are widely used in industrial catalytic processes, where the relation between surface structure and function is well-known. However, the effect of subsurface layers on such catalysts remains mostly unstudied. Here, we demonstrate a clear subsurface effect on supported 2 nm core-shell NPs with atomically precise and high temperature stable Pt3Mn intermetallic surface measured by in situ synchrotron X-ray Diffraction, difference X-ray Absorption Spectroscopy, and Energy Dispersive X-ray Spectroscopy. The NPs with a Pt3Mn subsurface have 98% selectivity to C-H over C-C bond activation during propane dehydrogenation at 550 °C compared with 82% for core-shell NPs with a Pt subsurface. The difference is correlated with significant reduction in the heats of reactant adsorption due to the Pt3Mn intermetallic subsurface as discerned by theory as well as experiment. The findings of this work highlight the importance of subsurface for supported NP catalysts, which can be tuned via controlled intermetallic formation. Such approach is generally applicable to modifying multimetallic NPs, adding another dimension to the tunability of their catalytic performance.

12.
Phys Chem Chem Phys ; 20(40): 25762-25771, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30283941

RESUMO

We report on direct measurement of all major ion-fragments and cluster-ions formed during high-energy electron impact of 2 keV on gaseous and condensed-phase pyridine. The ion-fragments of the parent pyridine cation are discussed in groups according to the number of atoms from the aromatic ring. The ion yield distributions within these groups show significant shifts towards higher masses for condensed pyridine compared to gaseous pyridine due to hydrogen migration. A wide spectrum of desorbed hydrogenated fragment-ions and ionic clusters with masses up to 320 u are observed for pyridine. The ion yields for the protonated parent molecule (C5H5NH+), the dehydrogenated dimer (C10H9N2+) and the dehydrogenated trimer (C15H12N3+) depend on the mass of the desorbing ionic clusters. The strongest cluster signals are assigned to binding between the parent cation and subunits of the pyridine molecule. Quantum-chemical calculations reveal that the formation of a bond between the pyridine molecules and a carbenium ion is crucial for the stability of selected cluster ions.

13.
Nano Lett ; 17(8): 4576-4582, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28650641

RESUMO

The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous "strong metal-support bonding" between gold nanoparticles and "nano-engineered" Fe3O4 substrates by in situ microscopy. During in situ vacuum annealing of Au-Fe3O4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe3O4 on Au nanoparticles, the gold nanoparticles transform into the gold thin films and wet the surface of nano-Fe3O4, as the surface reduction of nano-Fe3O4 proceeds. This phenomenon results from a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe3O4 and the extremely strong adhesion between Au and the reduced Fe3O4. This strong metal-support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and ultimately for the development of improved catalysts and functional nanostructures.

14.
J Am Chem Soc ; 138(36): 11560-7, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27414757

RESUMO

Wet conditions in heterogeneous catalysis can substantially improve the rate of surface reactions by assisting the diffusion of reaction intermediates between surface reaction sites. The atomistic mechanisms underpinning this accelerated mass transfer are, however, concealed by the complexity of the dynamic water/solid interface. Here we employ ab initio molecular dynamics simulations to disclose the fast diffusion of protons and hydroxide species along the interface between water and ceria, a catalytically important, highly reducible oxide. Up to 20% of the interfacial water molecules are shown to dissociate at room temperature via proton transfer to surface O atoms, leading to partial surface hydroxylation and to a local increase of hydroxide species in the surface solvation layer. A water-mediated Grotthus-like mechanism is shown to activate the fast and long-range proton diffusion at the water/oxide interface. We demonstrate the catalytic importance of this dynamic process for water dissociation at ceria-supported Pt nanoparticles, where the solvent accelerates the spillover of ad-species between oxide and metal sites.

15.
J Am Chem Soc ; 138(18): 6028-48, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27070199

RESUMO

The relationships among the macroscopic compositional parameters of a Cu-exchanged SSZ-13 zeolite catalyst, the types and numbers of Cu active sites, and activity for the selective catalytic reduction (SCR) of NOx with NH3 are established through experimental interrogation and computational analysis of materials across the catalyst composition space. Density functional theory, stochastic models, and experimental characterizations demonstrate that within the synthesis protocols applied here and across Si:Al ratios, the volumetric density of six-membered-rings (6MR) containing two Al (2Al sites) is consistent with a random Al siting in the SSZ-13 lattice subject to Löwenstein's rule. Further, exchanged Cu(II) ions first populate these 2Al sites before populating remaining unpaired, or 1Al, sites as Cu(II)OH. These sites are distinguished and enumerated ex situ through vibrational and X-ray absorption spectroscopies (XAS) and chemical titrations. In situ and operando XAS follow Cu oxidation state and coordination environment as a function of environmental conditions including low-temperature (473 K) SCR catalysis and are rationalized through first-principles thermodynamics and ab initio molecular dynamics. Experiment and theory together reveal that the Cu sites respond sensitively to exposure conditions, and in particular that Cu species are solvated and mobilized by NH3 under SCR conditions. While Cu sites are spectroscopically and chemically distinct away from these conditions, they exhibit similar turnover rates, apparent activation energies and apparent reaction orders at the SCR conditions, even on zeolite frameworks other than SSZ13.


Assuntos
Cobre/química , Zeolitas/química , Amônia/química , Catálise , Cátions , Hidróxidos/química , Oxirredução , Termodinâmica
16.
Inorg Chem ; 55(5): 2413-20, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26878202

RESUMO

Catalyst support materials of tetragonal ZrO2, stabilized by either La2O3 (La2O3-ZrO2) or CeO2 (CeO2-ZrO2), were synthesized under hydrothermal conditions at 200 °C with NH4OH or tetramethylammonium hydroxide as the mineralizer. From in situ synchrotron powder X-ray diffraction and small-angle X-ray scattering measurements, the calcined La2O3-ZrO2 and CeO2-ZrO2 supports were nonporous nanocrystallites that exhibited rectangular shapes with a thermal stability of up to 1000 °C in air. These supports had an average size of ∼ 10 nm and a surface area of 59-97 m(2)/g. The catalysts Pt/La2O3-ZrO2 and Pt/CeO2-ZrO2 were prepared by using atomic layer deposition with varying Pt loadings from 6.3 to 12.4 wt %. Monodispersed Pt nanoparticles of ∼ 3 nm were obtained for these catalysts. The incorporation of La2O3 and CeO2 into the t-ZrO2 structure did not affect the nature of the active sites for the Pt/ZrO2 catalysts for the water-gas shift reaction.

17.
Phys Chem Chem Phys ; 18(3): 1969-79, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686546

RESUMO

Further understanding of the chemisorption properties towards CO and H2 on silica-supported Ru nanoparticles is crucial in order to rationalize their high activity towards methanation, Fischer Tropsch and Water Gas Shift reactions. Ru nanoparticles having the same chemisorption properties towards CO and H2 were synthesized on different silica-based supports in order to combine various analytical techniques and obtain complimentary detailed information on their structure; while silica spheres were used in order to obtain high-resolution TEM images of the Ru nanoparticles, high surface area silica-based material (SBA) allowed CO chemisorption to be monitored by (13)C NMR spectroscopy. In addition, a model of the hcp-based Ru nanoparticles observed by HR-TEM was used to predict by ab initio calculations the CO and H2 coverages on the Ru nanoparticle under different conditions of interest in catalysis. For both adsorbates we show and quantify how the adsorption properties of the nanoparticle differ from the commonly used slab models. For the case of CO we show how the top, bridge and hollow sites can be present on the Ru nanoparticle, providing a description at atomistic level in good agreement with the IR spectroscopy measurements.

18.
J Org Chem ; 80(3): 1909-14, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25562626

RESUMO

A fast-pyrolysis probe/tandem mass spectrometer combination was utilized to determine the initial fast-pyrolysis products for four different selectively (13)C-labeled cellobiose molecules. Several products are shown to result entirely from fragmentation of the reducing end of cellobiose, leaving the nonreducing end intact in these products. These findings are in disagreement with mechanisms proposed previously. Quantum chemical calculations were used to identify feasible low-energy pathways for several products. These results provide insights into the mechanisms of fast pyrolysis of cellulose.


Assuntos
Carboidratos/química , Isótopos de Carbono/química , Celobiose/química , Celulose/química , Hexoses/química , Temperatura Alta , Teoria Quântica , Espectrometria de Massas em Tandem
19.
Artigo em Inglês | MEDLINE | ID: mdl-26307712

RESUMO

A fast pyrolysis probe/linear quadrupole ion trap mass spectrometer combination was used to study the primary fast pyrolysis products (those that first leave the hot pyrolysis surface) of cellulose, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, as well as of cellobiosan, cellotriosan, and cellopentosan, at 600°C. Similar products with different branching ratios were found for the oligosaccharides and cellulose, as reported previously. However, identical products (with the exception of two) with similar branching ratios were measured for cellotriosan (and cellopentosan) and cellulose. This result demonstrates that cellotriosan is an excellent small-molecule surrogate for studies of the fast pyrolysis of cellulose and also that most fast pyrolysis products of cellulose do not originate from the reducing end. Based on several observations, the fast pyrolysis of cellulose is suggested to initiate predominantly via two competing processes: the formation of anhydro-oligosaccharides, such as cellobiosan, cellotriosan, and cellopentosan (major route), and the elimination of glycolaldehyde (or isomeric) units from the reducing end of oligosaccharides formed from cellulose during fast pyrolysis.


Assuntos
Aldeídos/química , Celulose/análise , Celulose/química , Calefação/métodos , Oligossacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Aldeídos/análise , Biocombustíveis/análise , Oligossacarídeos/análise
20.
Angew Chem Int Ed Engl ; 53(44): 11828-33, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25220217

RESUMO

Operando X-ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, exchanged Cu(II) ions evidence both Cu(II) and Cu(I) ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for Cu(II) reduction to Cu(I). DFT calculations show that NO-assisted NH3 dissociation is both energetically favorable and accounts for the observed Cu(II) reduction. The calculations predict in situ generation of Brønsted sites proximal to Cu(I) upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of Cu(I) to Cu(II), which DFT suggests to occur by a NO2 intermediate. Reaction of Cu-bound NO2 with proximal NH4(+) completes the catalytic cycle. N2 is produced in both reduction and oxidation half-cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA