Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Haematol ; 201(1): 45-57, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36484163

RESUMO

In chronic lymphocytic leukaemia (CLL) the efficacy of SARS-CoV-2 vaccination remains unclear as most studies have focused on humoral responses. Here we comprehensively examined humoral and cellular responses to vaccine in CLL patients. Seroconversion was observed in 55.2% of CLL with lower rate and antibody titres in treated patients. T-cell responses were detected in a significant fraction of patients. CD4+ and CD8+ frequencies were significantly increased independent of serology with higher levels of CD4+ cells in patients under a Bruton tyrosine kinase (BTK) or a B-cell lymphoma 2 (BCL-2) inhibitor. Vaccination skewed CD8+ cells towards a highly cytotoxic phenotype, more pronounced in seroconverted patients. A high proportion of patients showed spike-specific CD4+ and CD8+ cells producing interferon gamma (IFNγ) and tumour necrosis factor alpha (TNFα). Patients under a BTK inhibitor showed increased production of IFNγ and TNFα by CD4+ cells. Vaccination induced a Th1 polarization reverting the Th2 CLL T-cell profile in the majority of patients with lower IL-4 production in untreated and BTK-inhibitor-treated patients. Such robust T-cell responses may have contributed to remarkable protection against hospitalization and death in a cohort of 540 patients. Combining T-cell metrics with seroprevalence may yield a more accurate measure of population immunity in CLL, providing consequential insights for public health.


Assuntos
Antineoplásicos , COVID-19 , Leucemia Linfocítica Crônica de Células B , Vacinas , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Vacinas contra COVID-19/uso terapêutico , Fator de Necrose Tumoral alfa , SARS-CoV-2 , Estudos Soroepidemiológicos , COVID-19/prevenção & controle , Antineoplásicos/uso terapêutico , Interferon gama
2.
Inflamm Res ; 72(10-11): 2037-2052, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37815550

RESUMO

INTRODUCTION: This study investigates the interactions between histaminergic system and glucocorticoid-induced leucin zipper (GILZ) in the inflammatory process and glucocorticoid modulation in lung fibrosis. METHODS: Wild-type (WT) and GILZ Knock-Out (KO) mice were treated with bleomycin (0.05 IU) or saline, delivered by intra-tracheal injection. After surgery, mice received a continuous infusion of JNJ7777120 (JNJ, 2 mg/kg b.wt.) or vehicle for 21 days. Lung function was studied by measuring airway resistance to air insufflation through the analysis of pressure at airway opening (PAO). Lung samples were collected to evaluate the expression of histamine H4R, Anx-A1, and p65-NF-kB, the activity of myeloperoxidase (MPO), and the production of pro-inflammatory cytokines. RESULTS: Airway fibrosis and remodeling were assessed by measuring TGF-ß production and α-SMA deposition. JNJ reduces PAO in WT but not in GILZ KO mice (from 22 ± 1 mm to 15 ± 0.5 and from 24 ± 1.5 to 19 ± 0.5 respectively), MPO activity (from 204 ± 3.13 pmol/mg to 73.88 ± 2.63 in WT and from 221 ± 4.46 pmol/mg to 107 ± 5.54 in GILZ KO), the inflammatory response, TGF-ß production, and α-SMA deposition in comparison to WT and GILZ KO vehicle groups. CONCLUSION: In conclusion, the role of H4R and GILZ in relation to glucocorticoids could pave the way for innovative therapies to counteract pulmonary fibrosis.


Assuntos
Glucocorticoides , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Histamina , Fatores de Transcrição/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Receptores Histamínicos , Fator de Crescimento Transformador beta/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768553

RESUMO

Ulcerative colitis (UC) and Crohn's Disease (CD) are chronic relapsing inflammatory diseases that are caused by genetic, environmental, and immune factors. Treatment strategies are currently based on symptomatic control by immunosuppression. The glucocorticoid-induced leucine zipper (GILZ), a mediator of several effects of glucocorticoids, was recently found to be secreted by goblet cells and play a role in inflammatory bowel disease (IBD). This study investigates which genes GILZ is associated with in its role in intestinal barrier functions. We examined datasets from the Gene Expression Omnibus (GEO) and ArrayExpress profiles of the gut of healthy subjects (HSs), as well as UC and CD patients. The human colonic epithelial HT29 cell line was used for in vitro validation experiments. GILZ was significantly correlated with MUC2, TLR2, and TLR4. In particular, an inverse correlation was found between the GILZ and MUC2 in HS and patients with IBD, mostly in those with an active disease. Further, direct pairwise correlations for GILZ/TLR2 and GILZ/TLR4 were found in HSs and UC patients, but not in CD patients. Overall, our results reveal the crosstalk at the transcription level between the GILZ, MUC2, and TLRs in the mucosal barrier through common pathways, and they open up new perspectives in terms of mucosal healing in IBD patients.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Doença de Crohn/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucina-2/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
4.
FASEB J ; 35(11): e21950, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34613638

RESUMO

Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders characterized by relapsing intestinal inflammation, but many details of pathogenesis remain to be fully unraveled. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a mediator of the anti-inflammatory effects of GCs, the most powerful drugs for IBD treatment, but they cause several unwanted side effects. The fusion protein TAT-GILZ has been successfully used in some pre-clinical models of inflammatory and autoimmune diseases. To test the efficacy of TAT-GILZ for treating dextran sulfate sodium (DSS)-induced colitis and explore its impact on the gut microbiome, colitis was induced by DSS in C57BL/6J mice and treated with TAT-GILZ or dexamethasone. Various hallmarks of colitis were analyzed, including disease activity index, gut permeability, and expression of pro-inflammatory cytokines and tight junction proteins. TAT-GILZ treatment showed a therapeutic effect when administered after the onset of colitis. Its efficacy was associated with improved gut permeability, as evidenced by zonula occludens-1 and CD74 upregulation in inflamed colonic tissue. TAT-GILZ also ameliorated the changes in the gut microbiota induced by the DSS, thus potentially providing an optimal environment for colonization of the mucosa surface by beneficial bacteria. Overall, our results demonstrated for the first time that TAT-GILZ treatment proved effective after disease onset allowing restoration of gut permeability, a key pathogenic feature of colitis. Additionally, TAT-GILZ restored gut dysbiosis, thereby contributing to healing mechanisms. Interestingly, we found unprecedented effects of exogenous GILZ that did not overlap with those of GCs.


Assuntos
Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Mucosa Intestinal/metabolismo , Permeabilidade/efeitos dos fármacos , Proteínas Recombinantes de Fusão/administração & dosagem , Fatores de Transcrição/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Antígenos de Diferenciação de Linfócitos B/metabolismo , Colite/metabolismo , Citocinas/metabolismo , Dexametasona/administração & dosagem , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe II/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transativadores/genética , Fatores de Transcrição/genética , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo
5.
Pharmacol Res ; 185: 106511, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36243331

RESUMO

Coronavirus Disease 19 (COVID-19) is associated with high morbidity and mortality rates globally, representing the greatest health and economic challenge today. Several drugs are currently approved for the treatment of COVID-19. Among these, glucocorticoids (GCs) have received particular attention due to their anti-inflammatory and immunosuppressive effects. In fact, GC are widely used in current clinical practice to treat inflammatory, allergic and autoimmune diseases. Major mechanisms of GC action include inhibition of innate and adaptive immune activity. In particular, an important role is played by the inhibition of pro-inflammatory cytokines and chemokines, and the induction of proteins with anti-inflammatory activity. Overall, as indicated by various national and international regulatory agencies, GCs are recommended for the treatment of COVID-19 in patients requiring oxygen therapy, with or without mechanical ventilation. Regarding the use of GCs for the COVID-19 treatment of non-hospitalized patients at an early stage of the disease, many controversial studies have been reported and regulatory agencies have not recommended their use. The decision to start GC therapy should be based not only on the severity of COVID-19 disease, but also on careful considerations of the benefit/risk profile in individual patients, including monitoring of adverse events. In this review we summarize the effects of GCs on the major cellular and molecular components of the inflammatory/immune system, the benefits and the adverse common reactions in the treatment of inflammatory/autoimmune diseases, as well as in the management of COVID-19.


Assuntos
Doenças Autoimunes , Tratamento Farmacológico da COVID-19 , Humanos , Glucocorticoides/uso terapêutico , Glucocorticoides/farmacologia , Anti-Inflamatórios/efeitos adversos , Doenças Autoimunes/tratamento farmacológico
6.
Pharmacol Res ; 182: 106353, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835370

RESUMO

Glucocorticoid-induced leucin zipper (GILZ) mediates the effects of glucocorticoids in immune cells, but little is known about its role in both the gastro-intestinal (GI) mucosa and inflammatory bowel diseases (IBD) in humans. To investigate the GILZ protein expression profile in the GI tract, mucosal biopsies from 80 patients were retrospectively enrolled in this study and subdivided into three groups: 1) patients without clinical-endoscopic and histological evidence of IBD; 2) IBD patients; 3) patients with chronic atrophic gastritis (CAG) and Barrett esophagus (BE), both characterized by intestinal metaplasia (IM). GILZ expression was assessed by immunohistochemical and immunofluorescence methods. Our results showed that GILZ protein was strongly expressed in the secretory cells in healthy mucosa. GILZ expression was reduced in goblet cells in active disease, whereas it was restored in quiescent diseases. Conversely, entero-endocrine cells were not involved in such inflammation-driven dynamics, as GILZ expression remained detectable in active disease. Moreover, GILZ was expressed in IM, but was limited to CAG, and was not detected in BE. In summary, GILZ acts as a secretory protein in the GI mucosa in healthy, hyperplastic and metaplastic conditions. Its secretion by goblet cells is mostly affected by neutrophils mucosal infiltration and seems to be directly related to active mucosal inflammation in IBD. Overall, our findings suggest that GILZ is a suitable molecule to be considered as a histological marker of mucosal healing.


Assuntos
Glucocorticoides , Doenças Inflamatórias Intestinais , Biomarcadores , Glucocorticoides/farmacologia , Humanos , Inflamação , Doenças Inflamatórias Intestinais/tratamento farmacológico , Zíper de Leucina , Mucosa , Estudos Retrospectivos , Fatores de Transcrição/metabolismo
7.
J Cell Mol Med ; 25(1): 217-228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33247627

RESUMO

Poor prognosis in heart failure and the lack of real breakthrough strategies validate targeting myocardial remodelling and the intracellular signalling involved in this process. So far, there are no effective strategies to counteract hypertrophy, an independent predictor of heart failure progression and death. Glucocorticoid-induced leucine zipper (GILZ) is involved in inflammatory signalling, but its role in cardiac biology is unknown. Using GILZ-knockout (KO) mice and an experimental model of hypertrophy and diastolic dysfunction, we addressed the role of GILZ in adverse myocardial remodelling. Infusion of angiotensin II (Ang II) resulted in myocardial dysfunction, inflammation, apoptosis, fibrosis, capillary rarefaction and hypertrophy. Interestingly, GILZ-KO showed more evident diastolic dysfunction and aggravated hypertrophic response compared with WT after Ang II administration. Both cardiomyocyte and left ventricular hypertrophy were more pronounced in GILZ-KO mice. On the other hand, Ang II-induced inflammatory and fibrotic phenomena, cell death and reduction in microvascular density, remained invariant between the WT and KO groups. The analysis of regulators of hypertrophic response, GATA4 and FoxP3, demonstrated an up-regulation in WT mice infused with Ang II; conversely, such an increase did not occur in GILZ-KO hearts. These data on myocardial response to Ang II in mice lacking GILZ indicate that this protein is a new element that can be mechanistically involved in cardiovascular pathology.


Assuntos
Diástole , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição/deficiência , Angiotensina II , Animais , Pressão Sanguínea , Capilares/patologia , Morte Celular , Matriz Extracelular/metabolismo , Fibrose , Hipertrofia , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
FASEB J ; 34(11): 14820-14831, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910505

RESUMO

Glucocorticoid-induced TNFR family related gene (GITR) is a member of the TNFR superfamily that is expressed on cells of the immune system. Although the protective and pathogenic roles of GITR in T cell immunity are well characterized, the role of GITR in innate immunity in the intestinal tissues has not been well clarified. In this study, using a dextran sulfate sodium (DSS)-induced colitis model in mice, we found that GITR-deficiency rendered mice more susceptible to acute intestinal inflammation and that a significantly higher number of activated natural killer (NK) cells was accumulated in the colonic lamina propria of Gitr-/- mice as compared to wild-type mice. Additionally, Rag2-/- Gitr-/- mice, which lack T cells but have NK cells, also displayed more severe colonic inflammation than Rag2-/- mice. In contrast, an anti-GITR agonistic antibody significantly alleviated colitis in Rag2-/- mice. Engagement of GITR inhibited IL-15-mediated activating signaling events in NK cells, which include cell activation and proliferation, and production of cytokines and cytotoxic granules. Taken together, our results provide the first evidence that GITR negatively controls intestinal inflammation through NK cell functions.


Assuntos
Colite Ulcerativa/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Animais , Células Cultivadas , Colite Ulcerativa/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/genética , Interleucina-15/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL
9.
FASEB J ; 34(3): 4684-4701, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32030813

RESUMO

Statins, the most prescribed class of drugs for the treatment of hypercholesterolemia, can cause muscle-related adverse effects. It has been shown that the glucocorticoid-induced leucine zipper (GILZ) plays a key role in the anti-myogenic action of dexamethasone. In the present study, we aimed to evaluate the role of GILZ in statin-induced myopathy. Statins induced GILZ expression in C2C12 cells, primary murine myoblasts/myotubes, primary human myoblasts, and in vivo in zebrafish embryos and human quadriceps femoris muscle. Gilz induction was mediated by FOXO3 activation and binding to the Gilz promoter, and could be reversed by the addition of geranylgeranyl, but not farnesyl, pyrophosphate. Atorvastatin decreased Akt phosphorylation and increased cleaved caspase-3 levels in myoblasts. This effect was reversed in myoblasts from GILZ knockout mice. Similarly, myofibers isolated from knockout animals were more resistant toward statin-induced cell death than their wild-type counterparts. Statins also impaired myoblast differentiation, and this effect was accompanied by GILZ induction. The in vivo relevance of our findings was supported by the observation that gilz overexpression in zebrafish embryos led to impaired embryonic muscle development. Taken together, our data point toward GILZ as an essential mediator of the molecular mechanisms leading to statin-induced muscle damage.


Assuntos
Glucocorticoides/farmacologia , Zíper de Leucina/fisiologia , Músculos/metabolismo , Músculos/patologia , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Imunofluorescência , Humanos , Hibridização In Situ , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Músculos/efeitos dos fármacos , Fosfatos de Poli-Isoprenil/farmacologia , Peixe-Zebra
10.
Eur Heart J ; 41(31): 2938-2948, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32728688

RESUMO

AIMS: GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD). METHODS AND RESULTS: GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy controls. Plaque area in 28-week-old Gitr-/-Apoe-/- mice was reduced, and plaques had a favourable phenotype with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the lymphoid population. RNA sequencing of Gitr-/-Apoe-/- and Apoe-/- monocytes and macrophages revealed altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr-/-Apoe-/- monocytes displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity. CONCLUSION: Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the arterial wall and impedes atherosclerosis progression.


Assuntos
Aterosclerose , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Modelos Animais de Doenças , Glucocorticoides , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores do Fator de Necrose Tumoral
11.
Pharmacol Res ; 158: 104842, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413484

RESUMO

Macrophages are professional phagocytes that display remarkable plasticity, with a range of phenotypes that can be broadly characterized by the M1/M2 dichotomy. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a protein known to mediate anti-inflammatory and some pro-resolving actions, including as neutrophil apoptosis. However, the role of GILZ in key macrophage function is not well understood. Here, we investigated the role of GILZ on macrophage reprogramming and efferocytosis. Using murine bone-marrow-derived macrophages (BMDMs), we found that GILZ was expressed in naive BMDMs and exhibited increased expression in M2-like macrophages (IL4-differentiated). M1-like macrophages (IFN/LPS-differentiated) from GILZ-/- mice showed higher expression of the M1 markers CD86, MHC class II, iNOS, IL-6 and TNF-α, associated with increased levels of phosphorylated STAT1 and lower IL-10 levels, compared to M1-differentiated cells from WT mice. There were no changes in the M2 markers CD206 and arginase-1 in macrophages from GILZ-/- mice differentiated with IL-4, compared to cells from WT animals. Treatment of M1-like macrophages with TAT-GILZ, a cell-permeable GILZ fusion protein, decreased the levels of CD86 and MHC class II in M1-like macrophages without modifying CD206 levels in M2-like macrophages. In line with the in vitro data, increased numbers of M1-like macrophages were found into the pleural cavity of GILZ-/- mice after LPS-injection, compared to WT mice. Moreover, efferocytosis was defective in the context of GILZ deficiency, both in vitro and in vivo. Conversely, treatment of LPS-injected mice with TAT-GILZ promoted inflammation resolution, associated with lower numbers of M1-like macrophages and increased efferocytosis. Collectively, these data indicate that GILZ is a regulator of important macrophage functions, contributing to macrophage reprogramming and efferocytosis, both key steps for the resolution of inflammation.


Assuntos
Apoptose/efeitos dos fármacos , Glucocorticoides/farmacologia , Fatores de Transcrição/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Ensaios de Migração de Leucócitos , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/patologia , Contagem de Leucócitos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Cavidade Pleural/citologia
12.
FASEB J ; : fj201800245R, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29757674

RESUMO

In cancer cells, global genomic hypomethylation is found together with localized hypermethylation of CpG islands within the promoters and regulatory regions of silenced tumor suppressor genes. Demethylating agents may reverse hypermethylation, thus promoting gene re-expression. Unfortunately, demethylating strategies are not efficient in solid tumor cells. DNA demethylation is mediated by ten-eleven translocation enzymes (TETs). They sequentially convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is associated with active transcription; 5-formylcytosine; and finally, 5-carboxylcytosine. Although α-linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid, the major n-3 polyunsaturated fatty acids, have anti-cancer effects, their action, as DNA-demethylating agents, has never been investigated in solid tumor cells. Here, we report that EPA demethylates DNA in hepatocarcinoma cells. EPA rapidly increases 5hmC on DNA, inducing p21Waf1/Cip1 gene expression, which slows cancer cell-cycle progression. We show that the underlying molecular mechanism involves TET1. EPA simultaneously binds peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), thus promoting their heterodimer and inducing a PPARγ-TET1 interaction. They generate a TET1-PPARγ-RXRα protein complex, which binds to a hypermethylated CpG island on the p21 gene, where TET1 converts 5mC to 5hmC. In an apparent shuttling motion, PPARγ and RXRα leave the DNA, whereas TET1 associates stably. Overall, EPA directly regulates DNA methylation levels, permitting TET1 to exert its anti-tumoral function.-Ceccarelli, V., Valentini, V., Ronchetti, S., Cannarile, L., Billi, M., Riccardi, C., Ottini, L., Talesa, V. N., Grignani, F., Vecchini, A., Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism.

13.
Pharmacol Res ; 141: 21-31, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552973

RESUMO

Cannabinoids are known to possess anti-inflammatory and immunomodulatory properties, but the mechanisms involved are not fully understood. CB2 is the cannabinoid receptor that is expressed primarily on hematopoietic cells and mediates the immunoregulatory functions of cannabinoids. In order to study the effect of JTE907, a selective/inverse agonist of CB2 with anti-inflammatory properties, on the differentiation of T cell subtypes, we used an in vitro system of Th lineage-specific differentiation of naïve CD4+ T lymphocytes isolated from the mouse spleen. The results indicate that JTE907 was able to induce the differentiation of Th0 cells into the Treg cell phenotype, which was characterized by the expression of FoxP3, TGF-ß and IL-10. P38 phosphorylation and STAT5A activation were found to mediate the signaling pathway triggered by JTE907 via the CB2 receptor in Th0 lymphocytes. In mice with DNBS-induced colitis, JTE907 treatment was able to induce an increase in the number of CD4+CD25+FoxP3+ cells in the lamina propria after 24 h of disease onset and reduce disease severity after 48 h. Further, longer JTE907 treatment resulted in less severe colitis even when administered orally, resulting in less body weight loss, reduction of the disease score, prevention of NF-κB activation, and reduction of the expression of adhesion molecules. Collectively, the results of this study indicate that specific signals delivered through the CB2 receptor can drive the immune response towards the Treg cell phenotype. Thus, ligands such as JTE907 may have use as potential therapeutic agents in autoimmune and inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/imunologia , Dioxóis/farmacologia , Quinolonas/farmacologia , Receptor CB2 de Canabinoide/imunologia , Linfócitos T/efeitos dos fármacos , Animais , Diferenciação Celular , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Citocinas/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Baço/citologia , Linfócitos T/citologia , Linfócitos T/imunologia
14.
J Immunol ; 199(9): 3031-3041, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939758

RESUMO

The mechanisms leading to autoimmune and inflammatory diseases in the CNS have not been elucidated. The environmental triggers of the aberrant presence of CD4+ T cells in the CNS are not known. In this article, we report that abnormal ß-catenin expression in T cells drives a fatal neuroinflammatory disease in mice that is characterized by CNS infiltration of T cells, glial activation, and progressive loss of motor function. We show that enhanced ß-catenin expression in T cells leads to aberrant and Th1-biased T cell activation, enhanced expression of integrin α4ß1, and infiltration of activated T cells into the spinal cord, without affecting regulatory T cell function. Importantly, expression of ß-catenin in mature naive T cells was sufficient to drive integrin α4ß1 expression and CNS migration, whereas pharmacologic inhibition of integrin α4ß1 reduced the abnormal T cell presence in the CNS of ß-catenin-expressing mice. Together, these results implicate deregulation of the Wnt/ß-catenin pathway in CNS inflammation and suggest novel therapeutic strategies for neuroinflammatory disorders.


Assuntos
Integrina alfa4beta1/imunologia , Doenças da Medula Espinal/imunologia , Medula Espinal/imunologia , Células Th1/imunologia , Via de Sinalização Wnt/imunologia , beta Catenina/imunologia , Animais , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Integrina alfa4beta1/genética , Camundongos , Camundongos Knockout , Medula Espinal/patologia , Doenças da Medula Espinal/genética , Doenças da Medula Espinal/patologia , Células Th1/patologia , Via de Sinalização Wnt/genética , beta Catenina/genética
15.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845709

RESUMO

Glucocorticoids (GCs) are widely used to treat several diseases because of their powerful anti-inflammatory and immunomodulatory effects on immune cells and non-lymphoid tissues. The effects of GCs on T cells are the most relevant in this regard. In this review, we analyze how GCs modulate the survival, maturation, and differentiation of regulatory T (Treg) cell subsets into both murine models and humans. In this way, GCs change the Treg cell number with an impact on the mid-term and long-term efficacy of GC treatment. In vitro studies suggest that the GC-dependent expansion of Treg cells is relevant when they are activated. In agreement with this observation, the GC treatment of patients with established autoimmune, allergic, or (auto)inflammatory diseases causes an expansion of Treg cells. An exception to this appears to be the local GC treatment of psoriatic lesions. Moreover, the effects on Treg number in patients with multiple sclerosis are uncertain. The effects of GCs on Treg cell number in healthy/diseased subjects treated with or exposed to allergens/antigens appear to be context-dependent. Considering the relevance of this effect in the maturation of the immune system (tolerogenic response to antigens), the success of vaccination (including desensitization), and the tolerance to xenografts, the findings must be considered when planning GC treatment.


Assuntos
Glucocorticoides/farmacologia , Linfócitos T Reguladores/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Linfócitos T Reguladores/efeitos dos fármacos
16.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652661

RESUMO

T cell gene signatures are used to evaluate T cell infiltration of non-lymphoid tissues and cancers in both experimental and clinical settings. However, some genes included in the available T cell signatures are not T cell-restricted. Herein, we propose a new human T cell signature that has been developed via a six-step procedure and comprises 15 T cell restricted genes. We demonstrate the new T cell signature, named signature-H, that differs from other gene signatures since it shows higher sensitivity and better predictivity in the evaluation of T cell infiltration in healthy tissues as well as 32 cancers. Further, results from signature-H are highly concordant with the immunohistochemistry methods currently used for assessing the prognosis of neuroblastoma, as demonstrated by the Kaplan-Meier curves of patients ranked by tumor T cell infiltration. Moreover, T cell infiltration levels calculated using signature-H correlate with the risk groups determined by the staging of the neuroblastoma. Finally, multiparametric analysis of tumor-infiltrating T cells based on signature-H let us favorably predict the response of melanoma to the anti-PD-1 antibody nivolumab. These findings suggest that signature-H evaluates T cell infiltration levels of tissues and may be used as a prognostic tool in the precision medicine perspective after appropriate clinical validation.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Movimento Celular , Neuroblastoma/genética , Linfócitos T/metabolismo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neuroblastoma/patologia , Nivolumabe/farmacologia , Linfócitos T/fisiologia
17.
J Pharmacol Exp Ther ; 367(3): 483-493, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30301736

RESUMO

The glucocorticoid-induced leucine zipper (GILZ) mediates anti-inflammatory effects of glucocorticoids. Acute kidney injury (AKI) mobilizes immune/inflammatory mechanisms, causing tissue injury, but the impact of GILZ in AKI is not known. Neutrophils play context-specific proinflammatory [type 1 neutrophil (N1)] and anti-inflammatory [type 2 neutrophil (N2)] functional roles. Also, regulatory T lymphocytes (Tregs) and regulatory T-17 (Treg17) cells exert counterinflammatory effects, including the suppression of effector T lymphocytes [e.g., T-helper (Th) 17 cells]. Thus, utilizing cell preparations of mice kidneys subjected to AKI or sham operation, we determined the effects of GILZ on T cells and neutrophil subtypes in the context of its renoprotective effect; these studies used the transactivator of transcription (TAT)-GILZ or the TAT peptide. AKI increased N1 and Th-17 cells but reduced N2, Tregs, and Treg17 cells in association with increased interleukin (IL)-17+ but reduced IL-10+ cells accompanied with the disruption of mitochondrial membrane potential (ψ m) and increased apoptosis/necrosis compared with sham kidneys. TAT-GILZ, compared with TAT, treatment reduced N1 and Th-17 cells but increased N2 and Tregs, without affecting Treg17 cells, in association with a reduction in IL-17+ cells but an increase in IL-10+ cells; TAT-GILZ caused less disruption of ψ m and reduced cell death in AKI. Importantly, TAT-GILZ increased perfusion of the ischemic-reperfused kidney but reduced tissue edema compared with TAT. Utilizing splenic T cells and bone marrow-derived neutrophils, we further showed marked reduction in the proliferation of Th cells in response to TAT-GILZ compared with response to TAT. Collectively, the results indicate that GILZ exerts renoprotection accompanied by the upregulation of the regulatory/suppressive arm of immunity in AKI, likely via regulating cross talk between T cells and neutrophils.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Glucocorticoides/farmacologia , Zíper de Leucina/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Injúria Renal Aguda/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Clin Sci (Lond) ; 132(14): 1529-1543, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065045

RESUMO

An established body of knowledge and clinical practice has argued in favor of the use of glucocorticoids in various chronic inflammatory and autoimmune diseases. However, the very well-known adverse effects associated with their treatment hampers continuation of therapy with glucocorticoids. Analyses of the molecular mechanisms underlying the actions of glucocorticoids have led to the discovery of several mediators that add complexity and diversity to the puzzling world of these hormones and anti-inflammatory drugs. Such mediators hold great promise as alternative pharmacologic tools to be used as anti-inflammatory drugs with the same properties as glucocorticoids, but avoiding their metabolic side effects. This review summarizes findings about the molecular targets and mediators of glucocorticoid function.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Glucocorticoides/uso terapêutico , Inflamação/tratamento farmacológico , Animais , Anti-Inflamatórios/efeitos adversos , Doenças Autoimunes/imunologia , Glucocorticoides/efeitos adversos , Humanos , Hipertensão/induzido quimicamente , Sistema Imunitário/citologia , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Inflamação/imunologia , Osteoporose/induzido quimicamente , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/imunologia , Receptores de Glucocorticoides/metabolismo
19.
FASEB J ; 31(7): 3054-3065, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28373208

RESUMO

The glucocorticoid-induced leucine zipper (GILZ) gene is a pivotal mediator of the anti-inflammatory effects of glucocorticoids (GCs) that are known to regulate the function of both adaptive and innate immunity cells. Our aim was to investigate the role of GILZ in GC-induced inhibition of neutrophil migration, as this role has not been investigated before. We found that GILZ expression was induced by dexamethasone (DEX), a synthetic GC, in neutrophils, and that it regulated migration of these cells into inflamed tissues under DEX treatment. Of note, inhibition of neutrophil migration was not observed in GILZ-knockout mice with peritonitis that were treated by DEX. This was because DEX was unable to up-regulate annexin A1 (Anxa1) expression in the absence of GILZ. Furthermore, we showed that GILZ mediates Anxa1 induction by GCs by transactivating Anxa1 expression at the promoter level via binding with the transcription factor, PU.1. The present findings shed light on the role of GILZ in the mechanism of induction of Anxa1 by GCs. As Anxa1 is an important protein for the resolution of inflammatory response, GILZ may represent a new pharmacologic target for treatment of inflammatory diseases.-Ricci, E., Ronchetti, S., Pericolini, E., Gabrielli, E., Cari, L., Gentili, M., Roselletti, E., Migliorati, G., Vecchiarelli, A., Riccardi, C. Role of the glucocorticoid-induced leucine zipper gene in dexamethasone-induced inhibition of mouse neutrophil migration via control of annexin A1 expression.


Assuntos
Anexina A1/metabolismo , Movimento Celular/fisiologia , Dexametasona/farmacologia , Neutrófilos/fisiologia , Fatores de Transcrição/metabolismo , Animais , Anexina A1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Peritonite/induzido quimicamente , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos
20.
Int J Mol Sci ; 19(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30563002

RESUMO

Glucocorticoids are hormones that regulate several functions in living organisms and synthetic glucocorticoids are the most powerful anti-inflammatory pharmacological tool that is currently available. Although glucocorticoids have an immunosuppressive effect on immune cells, they exert multiple and sometimes contradictory effects on neutrophils. From being extremely sensitive to the anti-inflammatory effects of glucocorticoids to resisting glucocorticoid-induced apoptosis, neutrophils are proving to be more complex than they were earlier thought to be. The aim of this review is to explain these complex pathways by which neutrophils respond to endogenous or to exogenous glucocorticoids, both under physiological and pathological conditions.


Assuntos
Anti-Inflamatórios , Apoptose , Glucocorticoides , Imunidade Inata/efeitos dos fármacos , Neutrófilos/imunologia , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Glucocorticoides/imunologia , Glucocorticoides/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Neutrófilos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA