Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(46): 28960-28970, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33127761

RESUMO

Inhibition of the chemokine receptor CXCR4 in combination with blockade of the PD-1/PD-L1 T cell checkpoint induces T cell infiltration and anticancer responses in murine and human pancreatic cancer. Here we elucidate the mechanism by which CXCR4 inhibition affects the tumor immune microenvironment. In human immune cell-based chemotaxis assays, we find that CXCL12-stimulated CXCR4 inhibits the directed migration mediated by CXCR1, CXCR3, CXCR5, CXCR6, and CCR2, respectively, chemokine receptors expressed by all of the immune cell types that participate in an integrated immune response. Inhibiting CXCR4 in an experimental cancer medicine study by 1-wk continuous infusion of the small-molecule inhibitor AMD3100 (plerixafor) induces an integrated immune response that is detected by transcriptional analysis of paired biopsies of metastases from patients with microsatellite stable colorectal and pancreatic cancer. This integrated immune response occurs in three other examples of immune-mediated damage to noninfected tissues: Rejecting renal allografts, melanomas clinically responding to anti-PD1 antibody therapy, and microsatellite instable colorectal cancers. Thus, signaling by CXCR4 causes immune suppression in human pancreatic ductal adenocarcinoma and colorectal cancer by impairing the function of the chemokine receptors that mediate the intratumoral accumulation of immune cells.


Assuntos
Neoplasias Colorretais/metabolismo , Imunidade/imunologia , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores CXCR4/efeitos dos fármacos , Receptores CXCR4/metabolismo , Idoso , Benzilaminas , Carcinoma Ductal Pancreático , Quimiocina CXCL12 , Neoplasias Colorretais/patologia , Ciclamos , Feminino , Compostos Heterocíclicos/antagonistas & inibidores , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Receptores CCR2/metabolismo , Receptores CXCR3/metabolismo , Receptores CXCR5/metabolismo , Receptores CXCR6/metabolismo , Receptores de Interleucina-8A/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/imunologia , Neoplasias Pancreáticas
2.
Anal Chem ; 94(3): 1795-1803, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35005896

RESUMO

Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Camundongos , Imagem Multimodal , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Gencitabina
3.
Br J Cancer ; 123(9): 1424-1436, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32741974

RESUMO

BACKGROUND: Personalised medicine strategies may improve outcomes in pancreatic ductal adenocarcinoma (PDAC), but validation of predictive biomarkers is required. Having developed a clinical trial to assess the ATR inhibitor, AZD6738, in combination with gemcitabine (ATRi/gem), we investigated ATM loss as a predictive biomarker of response to ATRi/gem in PDAC. METHODS: Through kinase inhibition, siRNA depletion and CRISPR knockout of ATM, we assessed how ATM targeting affected the sensitivity of PDAC cells to ATRi/gem. Using flow cytometry, immunofluorescence and immunoblotting, we investigated how ATRi/gem synergise in ATM-proficient and ATM-deficient cells, before assessing the impact of ATM loss on ATRi/gem sensitivity in vivo. RESULTS: Complete loss of ATM function (through pharmacological inhibition or CRISPR knockout), but not siRNA depletion, sensitised to ATRi/gem. In ATM-deficient cells, ATRi/gem-induced replication catastrophe was augmented, while phospho-Chk2-T68 and phospho-KAP1-S824 persisted via DNA-PK activity. ATRi/gem caused growth delay in ATM-WT xenografts in NSG mice and induced regression in ATM-KO xenografts. CONCLUSIONS: ATM loss augments replication catastrophe-mediated cell death induced by ATRi/gem and may predict clinical responsiveness to this combination. ATM status should be carefully assessed in tumours from patients with PDAC, since distinction between ATM-low and ATM-null could be critical in maximising the success of clinical trials using ATM expression as a predictive biomarker.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Sulfóxidos/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Feminino , Técnicas de Inativação de Genes , Humanos , Indóis , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Morfolinas , Neoplasias Pancreáticas/patologia , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Quinolinas/administração & dosagem , RNA Interferente Pequeno/farmacologia , Sulfonamidas , Sulfóxidos/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
4.
J Cell Sci ; 130(2): 512-520, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27888217

RESUMO

The fluorescence ubiquitination-based cell cycle indicator (FUCCI) is a powerful tool for use in live cells but current FUCCI-based assays have limited throughput in terms of image processing and quantification. Here, we developed a lentiviral system that rapidly introduced FUCCI transgenes into cells by using an all-in-one expression cassette, FastFUCCI. The approach alleviated the need for sequential transduction and characterisation, improving labelling efficiency. We coupled the system to an automated imaging workflow capable of handling large datasets. The integrated assay enabled analyses of single-cell readouts at high spatiotemporal resolution. With the assay, we captured in detail the cell cycle alterations induced by antimitotic agents. We found that treated cells accumulated at G2 or M phase but eventually advanced through mitosis into the next interphase, where the majority of cell death occurred, irrespective of the preceding mitotic phenotype. Some cells appeared viable after mitotic slippage, and a fraction of them subsequently re-entered S phase. Accordingly, we found evidence that targeting the DNA replication origin activity sensitised cells to paclitaxel. In summary, we demonstrate the utility of the FastFUCCI assay for quantifying spatiotemporal dynamics and identify its potential in preclinical drug development.


Assuntos
Bioensaio/métodos , Ciclo Celular , Análise de Célula Única/métodos , Ubiquitinação , Antimitóticos/farmacologia , Automação , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Fluorescência , Genes Reporter , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Mitose/efeitos dos fármacos , Paclitaxel/farmacologia , Análise Espaço-Temporal , Taxoides/farmacologia , Imagem com Lapso de Tempo , Ubiquitinação/efeitos dos fármacos
5.
PLoS Comput Biol ; 13(5): e1005529, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28467408

RESUMO

The dynamic of cancer is intimately linked to a dysregulation of the cell cycle and signalling pathways. It has been argued that selectivity of treatments could exploit loss of checkpoint function in cancer cells, a concept termed "cyclotherapy". Quantitative approaches that describe these dysregulations can provide guidance in the design of novel or existing cancer therapies. We describe and illustrate this strategy via a mathematical model of the cell cycle that includes descriptions of the G1-S checkpoint and the spindle assembly checkpoint (SAC), the EGF signalling pathway and apoptosis. We incorporated sites of action of four drugs (palbociclib, gemcitabine, paclitaxel and actinomycin D) to illustrate potential applications of this approach. We show how drug effects on multiple cell populations can be simulated, facilitating simultaneous prediction of effects on normal and transformed cells. The consequences of aberrant signalling pathways or of altered expression of pro- or anti-apoptotic proteins can thus be compared. We suggest that this approach, particularly if used in conjunction with pharmacokinetic modelling, could be used to predict effects of specific oncogene expression patterns on drug response. The strategy could be used to search for synthetic lethality and optimise combination protocol designs.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Biologia Computacional , Humanos , Farmacologia
6.
Bioinformatics ; 32(18): 2866-8, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153664

RESUMO

MOTIVATION: Many drug combinations are routinely assessed to identify synergistic interactions in the attempt to develop novel treatment strategies. Appropriate software is required to analyze the results of these studies. RESULTS: We present Combenefit, new free software tool that enables the visualization, analysis and quantification of drug combination effects in terms of synergy and/or antagonism. Data from combinations assays can be processed using classical Synergy models (Loewe, Bliss, HSA), as single experiments or in batch for High Throughput Screens. This user-friendly tool provides laboratory scientists with an easy and systematic way to analyze their data. The companion package provides bioinformaticians with critical implementations of routines enabling the processing of combination data. AVAILABILITY AND IMPLEMENTATION: Combenefit is provided as a Matlab package but also as standalone software for Windows (http://sourceforge.net/projects/combenefit/). CONTACT: Giovanni.DiVeroli@cruk.cam.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Combinação de Medicamentos , Sequenciamento de Nucleotídeos em Larga Escala , Software , Interface Usuário-Computador , Biologia Computacional/métodos , Sistemas de Liberação de Medicamentos
7.
J Pathol ; 239(3): 286-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27061193

RESUMO

Stromal targeting for pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming an attractive option, due to the lack of efficacy of standard chemotherapy and increased knowledge about PDAC stroma. We postulated that the addition of stromal therapy may enhance the anti-tumour efficacy of chemotherapy. Gemcitabine and all-trans retinoic acid (ATRA) were combined in a clinically applicable regimen, to target cancer cells and pancreatic stellate cells (PSCs) respectively, in 3D organotypic culture models and genetically engineered mice (LSL-Kras(G12D) (/+) ;LSL-Trp53(R172H) (/+) ;Pdx-1-Cre: KPC mice) representing the spectrum of PDAC. In two distinct sets of organotypic models as well as KPC mice, we demonstrate a reduction in cancer cell proliferation and invasion together with enhanced cancer cell apoptosis when ATRA is combined with gemcitabine, compared to vehicle or either agent alone. Simultaneously, PSC activity (as measured by deposition of extracellular matrix proteins such as collagen and fibronectin) and PSC invasive ability were both diminished in response to combination therapy. These effects were mediated through a range of signalling cascades (Wnt, hedgehog, retinoid, and FGF) in cancer as well as stellate cells, affecting epithelial cellular functions such as epithelial-mesenchymal transition, cellular polarity, and lumen formation. At the tissue level, this resulted in enhanced tumour necrosis, increased vascularity, and diminished hypoxia. Consequently, there was an overall reduction in tumour size. The enhanced effect of stromal co-targeting (ATRA) alongside chemotherapy (gemcitabine) appears to be mediated by dampening multiple signalling cascades in the tumour-stroma cross-talk, rather than ablating stroma or targeting a single pathway. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Adenocarcinoma/terapia , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/terapia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/terapia , Transdução de Sinais/efeitos dos fármacos , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/patologia , Gencitabina
8.
Anal Chem ; 88(12): 6190-4, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27228284

RESUMO

Porous graphitic carbon (PGC) is an important tool in a chromatographer's armory that retains polar compounds with mass spectrometry (MS)-compatible solvents. However, its applicability is severely limited by an unpredictable loss of retention, which can be attributed to contamination. The solutions offered fail to restore the original retention and our observations of retention time shifts of gemcitabine/metabolites on PGC are not consistent with contamination. The mobile phase affects the ionization state of analytes and the polarizable PGC surface that influences the strength of dispersive forces governing retention on the stationary phase. We hypothesized that failure to maintain the same PGC surface before and after running a gradient is a cause of the observed retention loss/variability on PGC. Herein, we optimize the choice of mobile phase solvent in a gradient program with three parts: a preparatory phase, which allows binding of analytes to column; an elution phase, which gives the required separation/peak shape; and a maintenance phase, to preserve the required retention capacity. Via liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis of gemcitabine and its metabolites extracted from tumor tissue, we demonstrate reproducible chromatography on three PGC columns of different ages. This approach simplifies use of the PGC to the same level as that of a C-18 column, removes the need for column regeneration, and minimizes run times, thus allowing PGC columns to be used to their full potential.

9.
Gut ; 63(6): 974-83, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24067278

RESUMO

DESIGN: Pharmacokinetic and pharmacodynamic parameters of cremophor-paclitaxel, nab-paclitaxel (human-albumin-bound paclitaxel, Abraxane) and a novel mouse-albumin-bound paclitaxel (m-nab-paclitaxel) were evaluated in genetically engineered mouse models (GEMMs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), histological and biochemical analysis. Preclinical evaluation of m-nab-paclitaxel included assessment by three-dimensional high-resolution ultrasound and molecular analysis in a novel secreted protein acidic and rich in cysteine (SPARC)-deficient GEMM of pancreatic ductal adenocarcinoma (PDA). RESULTS: nab-Paclitaxel exerted its antitumoural effects in a dose-dependent manner and was associated with less toxicity compared with cremophor-paclitaxel. SPARC nullizygosity in a GEMM of PDA, Kras(G12D);p53(flox/-);p48Cre (KPfC), resulted in desmoplastic ductal pancreas tumours with impaired collagen maturation. Paclitaxel concentrations were significantly decreased in SPARC null plasma samples and tissues when administered as low-dose m-nab-paclitaxel. At the maximally tolerated dose, SPARC deficiency did not affect the intratumoural paclitaxel concentration, stromal deposition and the immediate therapeutic response. CONCLUSIONS: nab-Paclitaxel accumulates and acts in a dose-dependent manner. The interaction of plasma SPARC and albumin-bound drugs is observed at low doses of nab-paclitaxel but is saturated at therapeutic doses in murine tumours. Thus, this study provides important information for future preclinical and clinical trials in PDA using nab-paclitaxel in combination with novel experimental and targeted agents.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacocinética , Osteonectina/metabolismo , Paclitaxel/farmacocinética , Neoplasias Pancreáticas/tratamento farmacológico , Veículos Farmacêuticos/farmacocinética , Paclitaxel Ligado a Albumina , Albuminas/farmacocinética , Albuminas/uso terapêutico , Animais , Animais Geneticamente Modificados , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/uso terapêutico , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Camundongos , Osteonectina/genética , Paclitaxel/sangue , Paclitaxel/uso terapêutico , Polietilenoglicóis/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553182

RESUMO

BACKGROUND: The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. It has been suggested that the adenosine pathway contributes to the ability of PDAC to evade the immune system and hence, its resistance to immuno-oncology therapies (IOT), by generating extracellular adenosine (eAdo). METHODS: Using genetically engineered allograft models of PDAC in syngeneic mice with defined and different immune infiltration and response to IOT and autochthonous tumors in KPC mice we investigated the impact of the adenosine pathway on the PDAC tumor microenvironment (TME). Flow cytometry and imaging mass cytometry (IMC) were used to characterize the subpopulation frequency and spatial distribution of tumor-infiltrating immune cells. Mass spectrometry imaging (MSI) was used to visualize adenosine compartmentalization in the PDAC tumors. RNA sequencing was used to evaluate the influence of the adenosine pathway on the shaping of the immune milieu and correlate our findings to published data sets in human PDAC. RESULTS: We demonstrated high expression of adenosine pathway components in tumor-infiltrating immune cells (particularly myeloid populations) in the murine models. MSI demonstrated that extracellular adenosine distribution is heterogeneous in tumors, with high concentrations in peri-necrotic, hypoxic regions, associated with rich myeloid infiltration, demonstrated using IMC. Protumorigenic M2 macrophages express high levels of the Adora2a receptor; particularly in the IOT resistant model. Blocking the in vivo formation and function of eAdo (Adoi), using a combination of anti-CD73 antibody and an Adora2a inhibitor slowed tumor growth and reduced metastatic burden. Additionally, blocking the adenosine pathway improved the efficacy of combinations of cytotoxic agents or immunotherapy. Adoi remodeled the TME, by reducing the infiltration of M2 macrophages and regulatory T cells. RNA sequencing analysis showed that genes related to immune modulation, hypoxia and tumor stroma were downregulated following Adoi and a specific adenosine signature derived from this is associated with a poorer prognosis in patients with PDAC. CONCLUSIONS: The formation of eAdo promotes the development of the immunosuppressive TME in PDAC, contributing to its resistance to conventional and novel therapies. Therefore, inhibition of the adenosine pathway may represent a strategy to modulate the PDAC immune milieu and improve therapy response in patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Adenosina , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Imunoterapia/métodos , Microambiente Tumoral
11.
Nanoscale ; 14(17): 6656-6669, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35438701

RESUMO

Nanocarriers have emerged as one of the most promising approaches for drug delivery. Although several nanomaterials have been approved for clinical use, the translation from lab to clinic remains challenging. However, by implementing rational design strategies and using relevant models for their validation, these challenges are being addressed. This work describes the design of novel immunocompatible polymer nanocarriers made of melanin-mimetic polydopamine and Pluronic F127 units. The nanocarrier preparation was conducted under mild conditions, using a highly reproducible method that was tuned to provide a range of particle sizes (<100 nm) without changing the composition of the carrier. A set of in vitro studies were conducted to provide a comprehensive assessment of the effect of carrier size (40, 60 and 100 nm) on immunocompatibility, viability and uptake into different pancreatic cancer cells varying in morphological and phenotypic characteristics. Pancreatic cancer is characterised by poor treatment efficacy and no improvement in patient survival in the last 40 years due to the complex biology of the solid tumour. High intra- and inter-tumoral heterogeneity and a dense tumour microenvironment limit diffusion and therapeutic response. The Pluronic-polydopamine nanocarriers were employed for the delivery of irinotecan active metabolite SN38, which is used in the treatment of pancreatic cancer. Increased antiproliferative effect was observed in all tested cell lines after administration of the drug encapsulated within the carrier, indicating the system's potential as a therapeutic agent for this hard-to-treat cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Histocompatibilidade , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Polímeros , Microambiente Tumoral , Neoplasias Pancreáticas
12.
Cancer Res ; 82(10): 1909-1925, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35350066

RESUMO

Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine. Recent studies have indicated that endothelial cell (EC) focal adhesion kinase (FAK) regulates DNA-damaging therapy-induced angiocrine factors and chemosensitivity in primary tumor models. Here, we show that inducible loss of EC-FAK in both orthotopic and spontaneous mouse models of PDAC is not sufficient to affect primary tumor growth but reduces liver and lung metastasis load and improves survival rates in gemcitabine-treated, but not untreated, mice. EC-FAK loss did not affect primary tumor angiogenesis, tumor blood vessel leakage, or early events in metastasis, including the numbers of circulating tumor cells, tumor cell homing, or metastatic seeding. Phosphoproteomics analysis showed a downregulation of the MAPK, RAF, and PAK signaling pathways in gemcitabine-treated FAK-depleted ECs compared with gemcitabine-treated wild-type ECs. Moreover, low levels of EC-FAK correlated with increased survival and reduced relapse in gemcitabine-treated patients with PDAC, supporting the clinical relevance of these findings. Altogether, we have identified a new role of EC-FAK in regulating PDAC metastasis upon gemcitabine treatment that impacts outcome. SIGNIFICANCE: These findings establish the potential utility of combinatorial endothelial cell FAK targeting together with gemcitabine in future clinical applications to control metastasis in patients with pancreatic ductal adenocarcinoma.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Células Endoteliais/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/patologia , Gencitabina , Neoplasias Pancreáticas
13.
EBioMedicine ; 68: 103396, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34049239

RESUMO

BACKGROUND: Chemotherapy and targeted agent anti-cancer efficacy is largely dependent on the proliferative state of tumours, as exemplified by agents that target DNA synthesis/replication or mitosis. As a result, cell cycle specificities of a number of cancer drugs are well known. However, they are yet to be described in a quantifiable manner. METHODS: A scalable cell synchronisation protocol used to screen a library of 235 anti-cancer compounds exposed over six hours in G1 or S/G2 accumulated AsPC-1 cells to generate a cell cycle specificity (CCS) score. FINDINGS: The synchronisation method was associated with reduced method-related cytotoxicity compared to nocodazole, delivering sufficient cell cycle purity and cell numbers to run high-throughput drug library screens. Compounds were identified with G1 and S/G2-associated specificities that, overall, functionally matched with a compound's target/mechanism of action. This annotation was used to describe a synergistic schedule using the CDK4/6 inhibitor, palbociclib, prior to gemcitabine/AZD6738 as well as describe the correlation between the CCS score and published synergistic/antagonistic drug schedules. INTERPRETATION: This is the first highly quantitative description of cell cycle-dependent drug sensitivities that utilised a tractable and tolerated method with potential uses outside the present study. Drug treatments such as those shown to be G1 or S/G2 associated may benefit from scheduling considerations such as after CDK4/6 inhibitors and being first in drug sequences respectively. FUNDING: Cancer Research UK (CRUK) Institute core grants C14303/A17197 and C9545/A29580. The Li Ka Shing Centre where this work was performed was generously funded by CK Hutchison Holdings Limited, the University of Cambridge, CRUK, The Atlantic Philanthropies and others.


Assuntos
Desoxicitidina/análogos & derivados , Neoplasias/metabolismo , Nocodazol/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Moduladores de Tubulina/farmacologia , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Fatores de Tempo , Gencitabina
14.
Mol Cancer Ther ; 20(10): 1926-1940, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376576

RESUMO

The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to increase delivery of administered chemotherapy have not shown positive clinical results thus far, and preclinical reports in which chemotherapeutic drugs were coadministered with antistromal therapies did not universally demonstrate increased genotoxicity despite increased intratumoral drug levels. In this study, we tested whether TGFß antagonism can break the stromal barrier, enhance perfusion and tumoral drug delivery, and interrogated cellular and molecular mechanisms by which the tumor prevents synergism with coadministered gemcitabine. TGFß inhibition in genetically engineered murine models (GEMM) of pancreas cancer enhanced tumoral perfusion and increased intratumoral gemcitabine levels. However, tumors rapidly adapted to TGFß-dependent stromal modulation, and intratumoral perfusion returned to pre-treatment levels upon extended TGFß inhibition. Perfusion was governed by the phenotypic identity and distribution of cancer-associated fibroblasts (CAF) with the myelofibroblastic phenotype (myCAFs), and myCAFs which harbored unique genomic signatures rapidly escaped the restricting effects of TGFß inhibition. Despite the reformation of the stromal barrier and reversal of initially increased intratumoral exposure levels, TGFß inhibition in cooperation with gemcitabine effectively suppressed tumor growth via cooperative reprogramming of T regulatory cells and stimulation of CD8 T cell-mediated antitumor activity. The antitumor activity was further improved by the addition of anti-PD-L1 immune checkpoint blockade to offset adaptive PD-L1 upregulation induced by TGFß inhibition. These findings support the development of combined antistroma anticancer therapies capable of impacting the tumor beyond the disruption of the desmoplastic stroma as a physical barrier to improve drug delivery.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/imunologia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Células Estromais/imunologia , Microambiente Tumoral , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Terapia Combinada , Desoxicitidina/farmacologia , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
15.
Cancers (Basel) ; 12(7)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698524

RESUMO

BACKGROUND: The tumor microenvironment (TME) is composed of fibro-inflammatory cells and extracellular matrix (ECM) components. However, the exact contribution of the various TME compartments towards therapeutic response is unknown. Here, we aim to dissect the specific contribution of tumor-associated macrophages (TAMs) towards drug delivery and response in pancreatic ductal adenocarcinoma (PDAC). METHODS: The effect of gemcitabine was assessed in human and murine macrophages, human pancreatic stellate cells (hPSCs), and tumor cells (L3.6pl, BxPC3 and KPC) in vitro. The drug metabolism of gemcitabine was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Preclinical studies were conducted using KrasG12D;p48-Cre and KrasG12D;p53172H;Pdx-Cre mice to investigate gemcitabine delivery at different stages of tumor progression and upon pharmacological TAM depletion. RESULTS: Gemcitabine accumulation was significantly increased in murine PDAC tissue compared to pancreatic intraepithelial neoplasia (PanIN) lesions and healthy control pancreas tissue. In vitro, macrophages accumulated and rapidly metabolized gemcitabine resulting in a significant drug scavenging effect for gemcitabine. Finally, pharmacological TAM depletion enhanced therapeutic response to gemcitabine in tumor-bearing KPC mice. CONCLUSION: Macrophages rapidly metabolize gemcitabine in vitro, and pharmacological depletion improves the therapeutic response to gemcitabine in vivo. Our study supports the notion that TAMs might be a promising therapeutic target in PDAC.

16.
EBioMedicine ; 48: 161-168, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31597597

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterised by extensive matrix deposition that has been implicated in impaired drug delivery and therapeutic resistance. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates collagen deposition and is highly upregulated in the activated stroma subtype with poor prognosis in PDAC patients. METHODS: KrasG12D;p48-Cre;SPARC-/- (KC-SPARC-/-) and KrasG12D;p48-Cre;SPARCWT (KC-SPARCWT) were generated and analysed at different stages of carcinogenesis by histological grading, immunohistochemistry for epithelial and stromal markers, survival and preclinical analysis. Pharmacokinetic and pharmacodynamic studies were conducted by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunohistochemistry following gemcitabine treatment (100 mg/kg) in vivo. FINDINGS: Global genetic ablation of SPARC in a KrasG12D driven mouse model resulted in significantly reduced overall and mature collagen deposition around early and advanced pancreatic intraepithelial neoplasia (PanIN) lesions and in invasive PDAC (p < .001). However, detailed pathological scoring and molecular analysis showed no effects on PanIN to PDAC progression, vessel density (CD31), tumour incidence, grading or metastatic frequency. Despite comparable tumour kinetics, ablation of SPARC resulted in a significantly shortened survival in KC-SPARC-/- mice (280 days versus 485 days, p < .03, log-rank-test). Using LC-MS/MS, we show that SPARC dependent collagen deposition does not affect intratumoural gemcitabine accumulation or immediate therapeutic response in tumour bearing KC-SPARCWT and KC-SPARC-/-mice. INTERPRETATION: Global SPARC ablation reduces the collagen-rich microenvironment in murine PDAC. Moreover, global SPARC depletion did not affect tumour growth kinetics, grading or metastatic frequency. Notably, the dense-collagen matrix did not restrict access of gemcitabine to the tumour. These findings may have direct translational implications in clinical trial design.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Colágeno/metabolismo , Desoxicitidina/análogos & derivados , Osteonectina/genética , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Osteonectina/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Gencitabina
17.
Nat Commun ; 10(1): 5167, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727888

RESUMO

BRAF and MEK1/2 inhibitors are effective in melanoma but resistance inevitably develops. Despite increasing the abundance of pro-apoptotic BIM and BMF, ERK1/2 pathway inhibition is predominantly cytostatic, reflecting residual pro-survival BCL2 family activity. Here, we show that uniquely low BCL-XL expression in melanoma biases the pro-survival pool towards MCL1. Consequently, BRAF or MEK1/2 inhibitors are synthetic lethal with the MCL1 inhibitor AZD5991, driving profound tumour cell death that requires BAK/BAX, BIM and BMF, and inhibiting tumour growth in vivo. Combination of ERK1/2 pathway inhibitors with BCL2/BCL-w/BCL-XL inhibitors is stronger in CRC, correlating with a low MCL1:BCL-XL ratio; indeed the MCL1:BCL-XL ratio is predictive of ERK1/2 pathway inhibitor synergy with MCL1 or BCL2/BCL-w/BCL-XL inhibitors. Finally, AZD5991 delays acquired BRAFi/MEKi resistance and enhances the efficacy of an ERK1/2 inhibitor in a model of acquired BRAFi + MEKi resistance. Thus combining ERK1/2 pathway inhibitors with MCL1 antagonists in melanoma could improve therapeutic index and patient outcomes.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Camundongos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteína bcl-X/metabolismo
18.
EBioMedicine ; 40: 394-405, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30709769

RESUMO

BACKGROUND: Cytosolic 5'-nucleotidase 1A (NT5C1A) dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. Here, we investigate NT5C1A expression in pancreatic ductal adenocarcinoma (PDAC) and its impact on gemcitabine metabolism and therapeutic efficacy. METHODS: NT5C1A expression was determined by semiquantitative immunohistochemistry using tissue microarrays. Gemcitabine metabolites and response were assessed in several human and murine PDAC cell lines using crystal violet assays, Western blot, viability assays, and liquid chromatography tandem mass-spectrometry (LC-MS/MS). FINDINGS: NT5C1A was strongly expressed in tumor cells of a large subgroup of resected PDAC patients in two independent patient cohorts (44-56% score 2 and 8-26% score 3, n = 414). In contrast, NT5C1A was expressed at very low levels in the tumor stroma, and neither stromal nor tumoral expression was a prognostic marker for postoperative survival. In vitro, NT5C1A overexpression increased gemcitabine resistance by reducing apoptosis levels and significantly decreased intracellular amounts of cytotoxic dFdCTP in +NT5C1A tumor cells. Co-culture experiments with conditioned media from +NT5C1A PSCs improved gemcitabine efficacy in tumor cells. In vivo, therapeutic efficacy of gemcitabine was significantly decreased and serum levels of the inactive gemcitabine metabolite dFdU significantly increased in mice bearing NT5C1A overexpressing tumors. INTERPRETATION: NT5C1A is robustly expressed in tumor cells of resected PDAC patients. Moreover, NT5C1A mediates gemcitabine resistance by decreasing the amount of intracellular dFdCTP, leading to reduced tumor cell apoptosis and larger pancreatic tumors in mice. Further studies should clarify the role of NT5C1A as novel predictor for gemcitabine treatment response in patients with PDAC.


Assuntos
5'-Nucleotidase/genética , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Animais , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
19.
Mol Cancer Ther ; 17(8): 1670-1682, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29891488

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers, and overall survival rates have barely improved over the past five decades. The antimetabolite gemcitabine remains part of the standard of care but shows very limited antitumor efficacy. Ataxia telangiectasia and Rad3-related protein (ATR), the apical kinase of the intra-S-phase DNA damage response, plays a central role in safeguarding cells from replication stress and can therefore limit the efficacy of antimetabolite drug therapies. We investigated the ability of the ATR inhibitor, AZD6738, to prevent the gemcitabine-induced intra-S-phase checkpoint activation and evaluated the antitumor potential of this combination in vitro and in vivo In PDAC cell lines, AZD6738 inhibited gemcitabine-induced Chk1 activation, prevented cell-cycle arrest, and restrained RRM2 accumulation, leading to the strong induction of replication stress markers only with the combination. Moreover, synergistic growth inhibition was identified in a panel of 5 mouse and 7 human PDAC cell lines using both Bliss Independence and Loewe models. In clonogenic assays, the combination abrogated survival at concentrations for which single agents had minor effects. In vivo, AZD6738 in combination with gemcitabine was well tolerated and induced tumor regression in a subcutaneous allograft model of a KrasG12D; Trp53R172H; Pdx-Cre (KPC) mouse cancer cell line, significantly extending survival. Remarkably, the combination also induced regression of a subgroup of KPC autochthonous tumors, which generally do not respond well to conventional chemotherapy. Altogether, our data suggest that AZD6738 in combination with gemcitabine merits evaluation in a clinical trial in patients with PDAC. Mol Cancer Ther; 17(8); 1670-82. ©2018 AACR.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Pirimidinas/uso terapêutico , Sulfóxidos/uso terapêutico , Adenocarcinoma/patologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/patologia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Indóis , Camundongos , Morfolinas , Pirimidinas/farmacologia , Sulfonamidas , Sulfóxidos/farmacologia , Gencitabina
20.
Cancer Res ; 78(11): 3054-3066, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29735549

RESUMO

Combination of cytotoxic therapy with emerging DNA damage response inhibitors (DDRi) has been limited by tolerability issues. However, the goal of most combination trials has been to administer DDRi with standard-of-care doses of chemotherapy. We hypothesized that mechanism-guided treatment scheduling could reduce the incidence of dose-limiting toxicities and enable tolerable multitherapeutic regimens. Integrative analyses of mathematical modeling and single-cell assays distinguished the synergy kinetics of WEE1 inhibitor (WEE1i) from CHEK1 inhibitor (CHK1i) by potency, spatiotemporal perturbation, and mitotic effects when combined with gemcitabine. These divergent properties collectively supported a triple-agent strategy, whereby a pulse of gemcitabine and CHK1i followed by WEE1i durably suppressed tumor cell growth. In xenografts, CHK1i exaggerated replication stress without mitotic CDK hyperactivation, enriching a geminin-positive subpopulation and intratumoral gemcitabine metabolite. Without overt toxicity, addition of WEE1i to low-dose gemcitabine and CHK1i was most effective in tumor control compared with single and double agents. Overall, our work provides quantitative insights into the mechanisms of DDRi chemosensitization, leading to the rational development of a tolerable multitherapeutic regimen.Significance: Multiple lines of mechanistic insight regarding DNA damage response inhibitors rationally guide the preclinical development of a tolerable multitherapeutic regimen.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/11/3054/F1.large.jpg Cancer Res; 78(11); 3054-66. ©2018 AACR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Desoxicitidina/análogos & derivados , Proteínas Nucleares/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA