Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 293(28): 10911-10925, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29784876

RESUMO

Copper plays key roles in catalytic and regulatory biochemical reactions essential for normal growth, development, and health. Dietary copper deficiencies or mutations in copper homeostasis genes can lead to abnormal musculoskeletal development, cognitive disorders, and poor growth. In yeast and mammals, copper is acquired through the activities of the CTR1 family of high-affinity copper transporters. However, the mechanisms of systemic responses to dietary or tissue-specific copper deficiency remain unclear. Here, taking advantage of the animal model Caenorhabditis elegans for studying whole-body copper homeostasis, we investigated the role of a C. elegans CTR1 homolog, CHCA-1, in copper acquisition and in worm growth, development, and behavior. Using sequence homology searches, we identified 10 potential orthologs to mammalian CTR1 Among these genes, we found that chca-1, which is transcriptionally up-regulated in the intestine and hypodermis of C. elegans during copper deficiency, is required for normal growth, reproduction, and maintenance of systemic copper balance under copper deprivation. The intestinal copper transporter CUA-1 normally traffics to endosomes to sequester excess copper, and we found here that loss of chca-1 caused CUA-1 to mislocalize to the basolateral membrane under copper overload conditions. Moreover, animals lacking chca-1 exhibited significantly reduced copper avoidance behavior in response to toxic copper conditions compared with WT worms. These results establish that CHCA-1-mediated copper acquisition in C. elegans is crucial for normal growth, development, and copper-sensing behavior.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Cobre/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte de Cátions/genética , Transportador de Cobre 1 , Homeostase , Intestinos , Transporte de Íons , Reprodução , Ativação Transcricional
2.
J Biol Chem ; 287(22): 18730-7, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22493481

RESUMO

The chromoshadow domain (CSD) of heterochromatin protein 1 (HP1) was recently shown to contribute to chromatin binding and transcriptional regulation through interaction with histone H3. Here, we demonstrate the structural basis of this interaction for the CSD of HP1α. This mode of H3 binding is dependent on dimerization of the CSD and recognition of a PxVxL-like motif, as for other CSD partners. NMR chemical shift mapping showed that the H3 residues that mediate the CSD interaction occur in and adjacent to the αN helix just within the nucleosome core. Access to the binding region would require some degree of unwrapping of the DNA near the nucleosomal DNA entry/exit site.


Assuntos
Heterocromatina/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Homólogo 5 da Proteína Cromobox , Dimerização , Heterocromatina/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA