RESUMO
The increased adoption of non-invasive laser-based techniques for analysis of cultural assets has recently called into question the non-invasiveness of the techniques in practical operation. The methods to assess the occurrence of radiation-induced alteration on paintings are very limited and none of them can predict damage. Here we present a novel multimodal imaging approach to understand the time and spatial evolution and types of laser-induced surface alterations, through simultaneous monitoring using visible and near infrared (VIS-NIR) reflectance hyperspectral imaging (HSI) and thermal imaging during Raman spectroscopy. The resultant physical and chemical changes were examined in detail by optical coherence tomography and synchrotron based micro-X-ray powder diffraction. HSI was found to be the most sensitive in detecting laser induced alternations compared with conventional methods. It is orders of magnitude more sensitive than Raman spectroscopy and even synchrotron-based micro-X-ray powder diffraction. In cases of thermally driven alterations, transient and reversible reflectance changes were found to be the first indications of laser-induced modifications and can therefore be used as precursors to prevent damage. VIS-NIR reflectance spectroscopy should be used to monitor laser-based analysis and potentially other radiation-based techniques in situ to mitigate laser induced alteration.
RESUMO
Historic gardens are green spaces characterised by tree stands with several veteran specimens of high artistic and cultural value. Such valuable plant components have to cope with biotic and abiotic stress factors as well as ongoing senescence processes. Maintaining tree health is therefore crucial to preserve their ecosystem services, but also to protect the monument and visitor health. In this context, finding smart, fast and cost-effective management solutions to monitor health and detect critical conditions for both stands and individual veteran trees can promote garden conservation. For this reason, we developed a novel framework based on Sentinel2 imagery, LiDAR sources and automatic cameras to identify risk spots regarding trees in historic gardens. The pilot study area consists of two closed Italian gardens from the 16th century, which were analysed as a unique Historic Garden System (HGS). The tree health status at stand level was assessed using a criterion based on the Normalized Difference Vegetation Index weighed on tree volume (NDVIt) and validated by a visual crown defoliation assessment. At the tree level, the health status of four veteran trees defined by the NDVIt was also evaluated using green chromatic coordinates (GCC) obtained from digital images acquired by cameras at daily intervals during one growing season. The 33% of the tree population was classified as being in poor health, i.e. "at risk". Veteran trees classified as "at risk" showed an anticipation of phenological phases and a lower GCC compared to reference trees. Despite variability determined by Sentinel medium resolution, the proposed framework showed good accuracy (0.74) for monitoring historical gardens. The semi-automatic risk point mapping system tested here proved to be effective in facilitating the management of historic gardens, which in turn could be applied in the wider context of urban greening.
RESUMO
In this work, we test the effectiveness of using highly transparent holographic phase reflection and transmission volume gratings based on multifunctional acrylates as linear compression and rotation sensors. The gratings are recorded in a holographic mixture based on multi-reticulated acrylate and haloalkanes. To activate the photo-polymerization process, we used a mixture of 6-oxocamphore and rhodamine 6G. The mixture is a simplified version of the mixture used in previous works and shows some interesting features mainly in connection with the different roles played by the rhodamine 6G dye at different writing wavelengths λ = 532 nm and λ = 460 nm. Regarding reflection gratings, the maximum achieved diffraction efficiency is ≈50% and their use as linear compression sensors produces a shift in the reflection peak of 2 nm. Following the removal of compression, the grating slowly returns to the initial state. Regarding transmission gratings, the maximum achieved diffraction efficiency is ≈45% and they demonstrate very high sensitivity to even small rotations in a free-standing configuration.
RESUMO
The assessment of five different laser treatments in the conservation of wall paintings was devised on the basis of the surface temperature monitoring by infrared thermography (IRT), ultraviolet-induced fluorescence-visible (UV-VIS) imaging, and optical coherence tomography (OCT). A series of yttrium-aluminum-garnet (YAG) lasers were tested for removal of shellac layers from wall painting mock-ups. The mock-ups were realized as buon fresco with different mineral based pigments (earths and iron oxide) on a lime- and sand-based mortar. After the carbonatation process, all the samples were treated with shellac (5% in ethanol). The effects of neodymium (Nd):YAG, holmium (Ho):YAG, and erbium (Er):YAG laser sources, in different operative modes, on average temperature of the surface, color, and morphology were inspected with complementary sensors. The results show the necessity to adopt a combined approach in establishing safe laser operating conditions to avoid any undesired effects induced on the artefacts by the laser treatments. We demonstrate, for the first time, the performance of the Ho:YAG laser in the removal of a conservation treatment.
RESUMO
In this work, we study the light-induced changes of the rotational speed of a thin photomobile film using a single-axis acoustic levitator operating at 40 kHz. In our experiments, a 50 µm thick photomobile polymer film (PMP) is placed in one of the nodes of a stationary acoustic field. Under the action of the field, the film remains suspended in air. By externally perturbing this stable equilibrium condition, the film begins to rotate with its natural frequency. The rotations are detected in real time by monitoring the light of a low power He-Ne laser impinging on and reflected by the film itself. During the rotational motion, an external laser source is used to illuminate the PMP film; as a consequence, the film bends and the rotational speed changes by about 20 Hz. This kind of contactless long-distance interaction is an ideal platform for the development and study of many electro-optics devices in microgravity and low-friction conditions. In particular, we believe that this technology could find applications in research fields such as 3D dynamic displays and aerospace applications.
RESUMO
We have developed a photo-mobile polymer film, that combines organic and inorganic materials, to allow for controlled motion that can be triggered by light or heat. Our film is made using recycled quartz and consists of two layers: a multi-acrylate polymer layer and a layer containing oxidized 4-amino-phenol and N-Vinyl-1-Pyrrolidinone. The use of quartz in our film also gives it a high temperature resistance of at least 350 °C. When exposed to heat, the film moves in a direction that is independent of the heat source, due to its asymmetrical design. Once the heat source is removed, the film returns to its original position. ATR-FTIR measurements confirm this asymmetrical configuration. This technology may have potential applications in energy harvesting, due to the piezoelectric properties of quartz.
RESUMO
We report on highly transparent holographic phase transmission volume gratings recorded in the visible region at λ = 532 nm. The maximum measured diffraction efficiency is higher than 80% with a grating pitch of Λ≈ 300 nm and a refractive index modulation Δn ≈ 0.018. To obtain these results, we used a holographic mixture based on multi-reticulated acrylate and haloalkanes (1-bromo-butane and 1-bromo-hexane) and a synergic combination of camphore-quinone, which has a maximum absorbance at c.a. 470 nm, and R6G, here used as co-initiator, to efficiently initiate the photo-polymerization process. High transparent and high efficient holographic structures based on polymers can find applications in many research fields including integrated optics, sensors, high density data storage and security.
RESUMO
We report on the morphological, spectral and dynamical characterization of one-dimensional transmission holographic volume phase gratings, whose refractive index contrast and nanometric pitch are dynamically controlled by an incident laser light. The grating is obtained by the photo-polymerization of a recently developed photo-mobile holographic composite polymer material. The observed changes in the refractive index contrast and grating pitch strongly suggest that the reversible all-optical real-time modulation of the obtained diffraction efficiency is induced by nano-fluidics.
RESUMO
As is well known, the deterioration of wall paintings due to the capillary rise of water through the walls is a very widespread problem. In this paper, a study of microclimate monitoring, unilateral nuclear magnetic resonance (NMR), and evanescent-field dielectrometry (EFD) was applied to map non-destructively, in situ, and in a quantitative way the distribution of the moisture in an ancient deteriorated wall painting of the eleventh century. Both unilateral NMR and EFD are quite new, fully portable, and non-destructive techniques, and their combination is absolutely new. The approach reported here is proposed as a new analytical protocol to afford the problem of mapping, non-destructively, the moisture in a deteriorated wall painting in a hypogeous building such as that of the second level of St. Clement Basilica, Rome (Italy), where the use of IR thermography is impaired due to the environmental conditions, and the gravimetric tests are forbidden due to the preciousness of the artifact. The moisture distribution was mapped at different depths, from the very first layers of the painted film to a depth of 2 cm. It has also been shown how the map obtained in the first layers of the artwork is affected by the environmental conditions typical of a hypogeous building, whereas the maps obtained at higher depths are representative of the moisture due to the capillary rise of water from the ground. The quantitative analysis of the moisture was performed by calibrating NMR and EFD signals with purposely prepared specimens. This study may be applied before and after performing any intervention aimed at restoring and improving the state of conservation of this type of artwork and reducing the dampness or extracting salts (driven by the variation of moisture content) and monitoring the effectiveness of the performed interventions during the time. This protocol is applicable to any type of porous material.
RESUMO
The archaeological site of Hierapolis (Denizli province, Turkey) is unique in terms of the conservation of marbles and travertines. Environmental factors (i.e. interaction with thermal waters, high thermal stress, CO2 degassing) and geological aspects (presence of seismic faults, frequent earthquakes, formation of travertine) play a fundamental role in the durability and conservation state of the stone materials. This paper presents a multi-analytical approach aimed to identify the phenomena and causes of stone decay related to environmental conditions. The analyses of alteration and decay phenomena are discussed together with the monitoring of the main environmental parameters and with analyses of waters and gases present in the archaeological site. Finally, the need of a continuous monitoring of the environmental parameters affecting the archaeological site is stressed.
RESUMO
The dielectric properties of water solutions of ethanol and sugar are investigated in the microwave region with the objective of setting up a method for the quality control of the fermentation process of alcoholic beverages. Alcoholic fermentation is the process by which carbohydrates, in particular sugar, are converted by the yeast into alcohol. During that process several other by-product compounds are produced, including a significant amount of carbon dioxide. The fermentation stage is of fundamental importance in the production of alcoholic beverages because some of the by-products' components have a considerable effect on the flavour, aroma, and other characteristic properties of the beverages. The on-line monitoring of the fermentation process can thus be very useful for controlling the timing and the development of the process in order to correct it earlier if deviations from "normality" occur. Dielectric spectroscopy is shown to be suitable for such a task, being able to discriminate between the initial water-sugar mixture and the final water-alcohol solution and making it possible to detect the production of carbon dioxide during fermentation. A case-study consisting of the monitoring of the primary fermentqtion of beer by dielectric spectroscopy is presented and discussed.
Assuntos
Bebidas Alcoólicas/análise , Fermentação , Micro-Ondas , Carboidratos/química , Impedância Elétrica , Etanol/análise , Análise Espectral , Água/químicaRESUMO
In this paper, the magnetic flux density (MFD) distribution in a neonatal intensive care unit is described and MFD values inside a few open infant warming systems and incubators are reported. Typical measured values of the magnetic flux density at power frequency (50 Hz) in the "general environment" (the rooms of the unit) were lower than 0.2 microT, while higher MFD values were detected close to medical equipment and inside the open infant warming systems. In both cases, the magnetic flux density quickly decreases with increasing distance, so that measured values are reduced to "background" (i.e., general environment) levels 20-30 cm away from the sources. The total harmonic content over the 100-800 Hz frequency range was also evaluated. In the general environment, measured values in this band were negligible, while this was not the case close to medical equipment. Field levels inside the open and closed incubators depend on the position of the electronic control system, of the heating power generator and its winding conductor, and of the 220 V main plug. The magnetic flux density was also monitored for a prolonged period of time in a few types of open infant warming systems and incubators under standard intensive care unit operation with premature newborn present.