Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Cell Sci ; 133(11)2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32327557

RESUMO

To segregate the chromosomes faithfully during cell division, cells assemble a spindle that captures the kinetochores and pulls them towards opposite poles. Proper spindle function requires correct interplay between microtubule motors and non-motor proteins. Defects in spindle assembly or changes in spindle dynamics are associated with diseases, such as cancer or developmental disorders. Here, we compared mitotic and meiotic spindles in fission yeast. We show that, even though mitotic and meiotic spindles underwent the typical three phases of spindle elongation, they have distinct features. We found that the relative concentration of the kinesin-14 family protein Pkl1 is decreased in meiosis I compared to mitosis, while the concentration of the kinesin-5 family protein Cut7 remains constant. We identified the second kinesin-14 family protein Klp2 and microtubule dynamics as factors necessary for proper meiotic spindle assembly. This work defines the differences between mitotic and meiotic spindles in fission yeast Schizosaccharomyces pombe, and provides prospect for future comparative studies.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Mitose , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático
2.
J Cell Sci ; 132(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31217286

RESUMO

In most eukaryotes, cytokinesis is mediated by the constriction of a contractile acto-myosin ring (CR), which promotes the ingression of the cleavage furrow. Many components of the CR interact with plasma membrane lipids suggesting that lipids may regulate CR assembly and function. Although there is clear evidence that phosphoinositides play an important role in cytokinesis, much less is known about the role of sterols in this process. Here, we studied how sterols influence division plane positioning and CR assembly in fission yeast. We show that increasing ergosterol levels in the plasma membrane blocks the assembly of F-actin cables from cytokinetic precursor nodes, preventing their compaction into a ring. Abnormal F-actin cables form after a delay, leading to randomly placed septa. Since the formin Cdc12 was detected on cytokinetic precursors and the phenotype can be partially rescued by inhibiting the Arp2/3 complex, which competes with formins for F-actin nucleation, we propose that ergosterol may inhibit formin dependent assembly of F-actin cables from cytokinetic precursors.


Assuntos
Actinas/metabolismo , Divisão Celular , Ergosterol/metabolismo , Forminas/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Citocinese
3.
Semin Cell Dev Biol ; 53: 28-38, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26806637

RESUMO

Cytokinesis gives rise to two independent daughter cells at the end of the cell division cycle. The fission yeast Schizosaccharomyces pombe has emerged as one of the most powerful systems to understand how cytokinesis is controlled molecularly. Like in most eukaryotes, fission yeast cytokinesis depends on an acto-myosin based contractile ring that assembles at the division site under the control of spatial cues that integrate information on cell geometry and the position of the mitotic apparatus. Cytokinetic events are also tightly coordinated with nuclear division by the cell cycle machinery. These spatial and temporal regulations ensure an equal cleavage of the cytoplasm and an accurate segregation of the genetic material in daughter cells. Although this model system has specificities, the basic mechanisms of contractile ring assembly and function deciphered in fission yeast are highly valuable to understand how cytokinesis is controlled in other organisms that rely on a contractile ring for cell division.


Assuntos
Citocinese , Schizosaccharomyces/citologia , Modelos Biológicos
4.
J Cell Sci ; 128(15): 2842-53, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26071525

RESUMO

Cell growth and division are tightly coordinated to maintain cell size constant during successive cell cycles. In Schizosaccharomyces pombe, the SAD kinase Cdr2 regulates the cell size at division and the positioning of the division plane. Cdr2 forms nodes on the medial cortex containing factors that constitute an inhibitory pathway for Wee1. This pathway is regulated by polar gradients of the DYRK kinase Pom1, and involves a direct inhibitor of Wee1, the SAD kinase Cdr1. Cdr2 also interacts with the anillin Mid1, which defines the division plane, and with additional components of the medial cortical nodes, including Blt1, which participate in the mitotic-promoting and cytokinetic functions of nodes. Here, we show that the interaction of Cdr2 with Wee1 and Mid1 requires the UBA domain of Cdr2, which is necessary for its kinase activity. In contrast, Cdr1 associates with the C-terminus of Cdr2, which is composed of basic and KA-1 lipid-binding domains. Mid1 also interacts with the C-terminus of Cdr2 and might bridge the N- and C-terminal domains, whereas Blt1 associates with the central spacer region. We propose that the association of Cdr2 effectors with different domains might constrain Cdr1 and Wee1 spatially to promote Wee1 inhibition upon Cdr2 kinase activation.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Tamanho Celular , DNA Fúngico/genética , Mitose/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/genética , Ligação Proteica , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética
5.
Biochem Soc Trans ; 42(1): 201-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24450652

RESUMO

Polarized cell growth requires a well-orchestrated number of events, namely selection of growth site, organization of cytoskeleton elements and delivery of new material to the growth region. The small Rho GTPase Cdc42 has emerged as a major organizer of polarized growth through its participation in many of these events. In the present short review, we focus on the regulation of Cdc42 activity and localization as well as how it controls downstream events necessary for polarized cell growth in Schizosaccharomyces pombe. Owing to the high level of similarity of the polarity pathways, analogies between fission yeast and other model systems can be useful to decipher how cells can actively define their shape by polarized growth.


Assuntos
Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/crescimento & desenvolvimento , Proteína cdc42 de Ligação ao GTP/fisiologia , Animais , Polaridade Celular , Humanos , Transporte Proteico , Schizosaccharomyces/citologia , Transdução de Sinais
6.
Traffic ; 12(12): 1744-58, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21899677

RESUMO

Fission yeast Cdc42 regulates polarized growth and is involved in For3 formin activation and actin cable assembly. We show here that a thermosensitive strain carrying the cdc42L160S allele has membrane traffic defects independent of the actin cable defects. This strain has decreased acid phosphatase (AP) secretion, intracellular accumulation of vesicles and fragmentation of vacuoles. In addition, the exocyst is not localized to the tips of these cells. Overproduction of the scaffold protein Pob1 suppressed cdc42L160S thermosensitive growth and restored exocyst localization and AP secretion. The GTPase Rho3 also suppressed cdc42L160S thermosensitivity, restored exocyst localization and AP secretion. However, Rho3 did not restore the actin cables in these cells as Pob1 does. Similarly, overexpression of psy1(+) , coding a syntaxin (t-SNARE) homolog, or of ypt2(+) , coding an SEC4 homolog in fission yeast, rescued growth at high temperature but did not restore actin cables, nor the exocyst-polarized localization. cdc42L160S cells also have defects in vacuole formation that were rescued by Pob1, Rho3 and Psy1. All together, we propose that Cdc42 and the scaffold Pob1 are required for membrane trafficking and fusion, contributing to polarized secretion, endosome recycling, vacuole formation and growth.


Assuntos
Membrana Celular/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Fosfatase Ácida/metabolismo , Actinas/genética , Actinas/metabolismo , Alelos , Carboxipeptidases/metabolismo , Membrana Celular/genética , Polaridade Celular/genética , Endossomos/genética , Endossomos/metabolismo , Exocitose/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação Fúngica da Expressão Gênica , Fusão de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico , Proteínas Qa-SNARE/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Vacúolos/genética , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
7.
Cell Rep ; 39(3): 110722, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443188

RESUMO

Septin filaments assemble into high-order molecular structures that associate with membranes, acting as diffusion barriers and scaffold proteins crucial for many cellular processes. How septin filaments organize in such structures is still not understood. Here, we used fission yeast to explore septin filament organization during cell division and its cell cycle regulation. Live-imaging and polarization microscopy analysis uncovered that septin filaments are initially recruited as a diffuse meshwork surrounding the acto-myosin contractile ring (CR) in anaphase, which undergoes compaction into two rings when CR constriction is initiated. We found that the anillin-like protein Mid2 is necessary to promote this compaction step, possibly acting as a bundler for septin filaments. Moreover, Mid2-driven septin compaction requires inputs from the septation initiation network as well as CR constriction and the ß(1,3)-glucan synthase Bgs1. This work highlights that anillin-mediated septin ring assembly is under strict cell cycle control.


Assuntos
Schizosaccharomyces , Septinas , Anáfase , Constrição , Proteínas Contráteis/metabolismo , Citocinese , Schizosaccharomyces/metabolismo , Septinas/metabolismo
8.
Biochem J ; 426(3): 243-53, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20175747

RESUMO

Eukaryotic cells display a wide range of morphologies important for cellular function and development. A particular cell shape is made via the generation of asymmetry in the organization of cytoskeletal elements, usually leading to actin localization at sites of growth. The Rho family of GTPases is present in all eukaryotic cells, from yeast to mammals, and their role as key regulators in the signalling pathways that control actin organization and morphogenetic processes is well known. In the present review we will discuss the role of Rho GTPases as regulators of yeasts' polarized growth, their mechanism of activation and signalling pathways in Saccharomyces cerevisiae and Schizosaccharomyces pombe. These two model yeasts have been very useful in the study of the molecular mechanisms responsible for cell polarity. As in other organisms with cell walls, yeast's polarized growth is closely related to cell-wall biosynthesis, and Rho GTPases are critical modulators of this process. They provide the co-ordinated regulation of cell-wall biosynthetic enzymes and actin organization required to maintain cell integrity during vegetative growth.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Divisão Celular/fisiologia , Citoesqueleto/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Biológicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/fisiologia , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Schizosaccharomyces/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo
9.
Mol Biol Cell ; 18(10): 4155-67, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17699595

RESUMO

Formins are conserved actin nucleators responsible for the assembly of diverse actin structures. Many formins are controlled through an autoinhibitory mechanism involving the interaction of a C-terminal DAD sequence with an N-terminal DID sequence. Here, we show that the fission yeast formin for3p, which mediates actin cable assembly and polarized cell growth, is regulated by a similar autoinhibitory mechanism in vivo. Multiple sites govern for3p localization to cell tips. The localization and activity of for3p are inhibited by an intramolecular interaction of divergent DAD and DID-like sequences. A for3p DAD mutant expressed at endogenous levels produces more robust actin cables, which appear to have normal organization and dynamics. We identify cdc42p as the primary Rho GTPase involved in actin cable assembly and for3p regulation. Both cdc42p, which binds at the N terminus of for3p, and bud6p, which binds near the C-terminal DAD-like sequence, are needed for for3p localization and full activity, but a mutation in the for3p DAD restores for3p localization and other phenotypes of cdc42 and bud6 mutants. In particular, the for3p DAD mutation suppresses the bipolar growth (NETO) defect of bud6Delta cells. These findings suggest that cdc42p and bud6p activate for3p by relieving autoinhibition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Forma Celular , Forminas , Proteínas dos Microfilamentos/química , Dados de Sequência Molecular , Fenótipo , Estrutura Terciária de Proteína , Transporte Proteico , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/química , Deleção de Sequência
10.
J Cell Biol ; 218(12): 4171-4194, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31597680

RESUMO

In fission yeast, cytokinesis requires a contractile actomyosin ring (CR) coupled to membrane and septum ingression. Septation proceeds in two phases. In anaphase B, the septum ingresses slowly. During telophase, the ingression rate increases, and the CR becomes dispensable. Here, we explore the relationship between the CR and septation by analyzing septum ultrastructure, ingression, and septation proteins in cells lacking F-actin. We show that the two phases of septation correlate with septum maturation and the response of cells to F-actin removal. During the first phase, the septum is immature and, following F-actin removal, rapidly loses the Bgs1 glucan synthase from the membrane edge and fails to ingress. During the second phase, the rapidly ingressing mature septum can maintain a Bgs1 ring and septum ingression without F-actin, but ingression becomes Cdc42 and exocyst dependent. Our results provide new insights into fungal cytokinesis and reveal the dual function of CR as an essential landmark for the concentration of Bgs1 and a contractile structure that maintains septum shape and synthesis.


Assuntos
Actinas/metabolismo , Glucosiltransferases/metabolismo , Schizosaccharomyces/citologia , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Anáfase , Membrana Celular/metabolismo , Parede Celular/metabolismo , Citocinese , Proteínas do Citoesqueleto/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Telófase
11.
Cell Rep ; 25(3): 772-783.e4, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332655

RESUMO

Paxillin is a scaffold protein that participates in focal adhesion signaling in mammalian cells. Fission yeast paxillin ortholog, Pxl1, is required for contractile actomyosin ring (CAR) integrity and collaborates with the ß-glucan synthase Bgs1 in septum formation. We show here that Pxl1's main function is to recruit calcineurin (CN) phosphatase to the actomyosin ring; and thus the absence of either Pxl1 or calcineurin causes similar cytokinesis defects. In turn, CN participates in the dephosphorylation of the Cdc15 F-BAR protein, which recruits and concentrates Pxl1 at the CAR. Our findings suggest the existence of a positive feedback loop between Pxl1 and CN and establish that Pxl1 is a crucial component of the CN signaling pathway during cytokinesis.


Assuntos
Calcineurina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinese/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Glucosiltransferases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Calcineurina/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação ao GTP/genética , Glucosiltransferases/genética , Proteólise , Proteínas de Schizosaccharomyces pombe/genética , beta-Glucanas/metabolismo
12.
Curr Biol ; 27(4): 534-542, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28162898

RESUMO

Proper division plane positioning is crucial for faithful chromosome segregation but also influences cell size, position, or fate [1]. In fission yeast, medial division is controlled through negative signaling by the cell tips during interphase and positive signaling by the centrally placed nucleus at mitotic entry [2-4]: the cell geometry network (CGN), controlled by the inhibitory cortical gradient of the DYRK kinase Pom1 emanating from the cell tips, first promotes the medial localization of cytokinetic ring precursors organized by the SAD kinase Cdr2 to pre-define the division plane [5-8]; then, massive nuclear export of the anillin-like protein Mid1 at mitosis entry confirms or readjusts the division plane according to nuclear position and triggers the assembly of a medial contractile ring [5, 9-11]. Strikingly, the Hippo-like septation initiation network (SIN) induces Cdr2 dissociation from cytokinetic precursors at this stage [12-14]. We show here that SIN-dependent phosphorylation of Cdr2 promotes its interaction with the 14-3-3 protein Rad24 that sequesters it in the cytoplasm during cell division. If this interaction is compromised, cytokinetic precursors are asymmetrically distributed in the cortex of newborn cells, leading to asymmetrical division if nuclear signaling is abolished. We conclude that, through this new function, the SIN resets the division plane in newborn cells to ensure medial division.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Citocinese , Citoplasma/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/fisiologia , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais
13.
Nat Commun ; 8: 15286, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513584

RESUMO

Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors.


Assuntos
Segregação de Cromossomos/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Mitose/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Simulação por Computador , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Modelos Biológicos , Método de Monte Carlo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/metabolismo
14.
Methods Mol Biol ; 1369: 379-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26519324

RESUMO

Unveiling the function of a novel protein is a challenging task that requires careful experimental design. Yeast cytokinesis is a conserved process that involves modular structural and regulatory proteins. For such proteins, an important step is to identify their domains and structural organization. Here we briefly discuss a collection of methods commonly used for sequence alignment and prediction of protein structure that represent powerful tools for the identification homologous domains and design of structure-function approaches to test experimentally the function of multi-domain proteins such as those implicated in yeast cytokinesis.


Assuntos
Biologia Computacional/métodos , Citocinese , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Relação Quantitativa Estrutura-Atividade , Sequência de Aminoácidos , Expressão Gênica , Mutação , Proteínas/genética , Alinhamento de Sequência , Leveduras/genética
15.
Cell Cycle ; 13(4): 538-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24316795

RESUMO

Where and when cells divide are fundamental questions. In rod-shaped fission yeast cells, the DYRK-family kinase Pom1 is organized in concentration gradients from cell poles and controls cell division timing and positioning. Pom1 gradients restrict to mid-cell the SAD-like kinase Cdr2, which recruits Mid1/Anillin for medial division. Pom1 also delays mitotic commitment through Cdr2, which inhibits Wee1. Here, we describe quantitatively the distributions of cortical Pom1 and Cdr2. These reveal low profile overlap contrasting with previous whole-cell measurements and Cdr2 levels increase with cell elongation, raising the possibility that Pom1 regulates mitotic commitment by controlling Cdr2 medial levels. However, we show that distinct thresholds of Pom1 activity define the timing and positioning of division. Three conditions-a separation-of-function Pom1 allele, partial downregulation of Pom1 activity, and haploinsufficiency in diploid cells-yield cells that divide early, similar to pom1 deletion, but medially, like wild-type cells. In these cells, Cdr2 is localized correctly at mid-cell. Further, Cdr2 overexpression promotes precocious mitosis only in absence of Pom1. Thus, Pom1 inhibits Cdr2 for mitotic commitment independently of regulating its localization or cortical levels. Indeed, we show Pom1 restricts Cdr2 activity through phosphorylation of a C-terminal self-inhibitory tail. In summary, our results demonstrate that distinct levels in Pom1 gradients delineate a medial Cdr2 domain, for cell division placement, and control its activity, for mitotic commitment.


Assuntos
Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ciclo Celular , Divisão Celular , Tamanho Celular , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
16.
J Cell Biol ; 206(1): 61-77, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24982431

RESUMO

Proper division plane positioning is essential to achieve faithful DNA segregation and to control daughter cell size, positioning, or fate within tissues. In Schizosaccharomyces pombe, division plane positioning is controlled positively by export of the division plane positioning factor Mid1/anillin from the nucleus and negatively by the Pom1/DYRK (dual-specificity tyrosine-regulated kinase) gradients emanating from cell tips. Pom1 restricts to the cell middle cortical cytokinetic ring precursor nodes organized by the SAD-like kinase Cdr2 and Mid1/anillin through an unknown mechanism. In this study, we show that Pom1 modulates Cdr2 association with membranes by phosphorylation of a basic region cooperating with the lipid-binding KA-1 domain. Pom1 also inhibits Cdr2 interaction with Mid1, reducing its clustering ability, possibly by down-regulation of Cdr2 kinase activity. We propose that the dual regulation exerted by Pom1 on Cdr2 prevents Cdr2 assembly into stable nodes in the cell tip region where Pom1 concentration is high, which ensures proper positioning of cytokinetic ring precursors at the cell geometrical center and robust and accurate division plane positioning.


Assuntos
Citocinese , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Segregação de Cromossomos , Cromossomos Fúngicos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Fosforilação , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Transporte Proteico , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química
17.
Cytoskeleton (Hoboken) ; 69(10): 764-77, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22888038

RESUMO

Cell division is a critical and irreversible step in the cell cycle. The strategies that cells follow to regulate the position of the division plane must take into account the global geometry of the cell as well as position of the genetic material to ensure its accurate segregation into daughter cells of a given cell shape and size. Along the years, research on Schizosaccharomyces pombe, a well-recognized model organism for cell division studies has allowed a detailed molecular understanding of the spatial mechanisms regulating cytokinesis. Division plane position in this unicellular rod-shaped organism, which divides by the assembly and constriction of a medially placed actomyosin ring, largely depends on the anillin-like protein Mid1. Therefore, the major pathways controlling the position of the division plane converge on Mid1. In this review, we make an overview of the studies that have deciphered how Mid1 localization and scaffolding activities are controlled over the cell cycle to ensure the symmetrical division of fission yeast cells. These studies have revealed new mechanisms generating spatial information based on nuclear shuttling of the division plane factor Mid1 and on the establishment of cortical inhibitory gradients of the cell polarity kinase Pom1.


Assuntos
Proteínas Contráteis/metabolismo , Citocinese , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Núcleo Celular/metabolismo , Proteínas Contráteis/química , Proteínas de Schizosaccharomyces pombe/química , Transdução de Sinais
18.
Curr Biol ; 20(21): 1959-65, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20970338

RESUMO

Microtubule nucleation by the γ-tubulin complex occurs primarily at centrosomes, but more diverse types of microtubule organizing centers (MTOCs) also exist, especially in differentiated cells. Mechanisms generating MTOC diversity are poorly understood. Fission yeast Schizosaccharomyces pombe has multiple types of cytoplasmic MTOCs, and these vary through the cell cycle. Cytoplasmic microtubule nucleation in fission yeast depends on a complex of proteins Mto1 and Mto2 (Mto1/2), which localizes to MTOCs and interacts with the γ-tubulin complex. Localization of Mto1 to prospective MTOC sites has been proposed as a key step in γ-tubulin complex recruitment and MTOC formation, but how Mto1 localizes to such sites has not been investigated. Here we identify a short conserved C-terminal sequence in Mto1, termed MASC, important for targeting Mto1 to multiple distinct MTOCs. Different subregions of MASC target Mto1 to different MTOCs, and multimerization of MASC is important for efficient targeting. Mto1 targeting to the cell equator during division depends on direct interaction with unconventional type II myosin Myp2. Targeting to the spindle pole body during mitosis depends on Sid4 and Cdc11, components of the septation initiation network (SIN), but not on other SIN components.


Assuntos
Proteínas de Transporte/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/ultraestrutura , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/ultraestrutura , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Sequência Conservada , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/metabolismo
19.
Mol Biol Cell ; 20(20): 4390-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19710424

RESUMO

Rho GTPases regulate the actin cytoskeleton in all eukaryotes. Fission yeast Cdc42 is involved in actin cable assembly and formin For3 regulation. We isolated cdc42-879 as a thermosensitive strain with actin cable and For3 localization defects. In a multicopy suppressor screening, we identified pob1(+) as suppressor of cdc42-879 thermosensitivity. Pob1 overexpression also partially restores actin cables and localization of For3 in the mutant strain. Pob1 interacts with Cdc42 and this GTPase regulates Pob1 localization and/or stability. The C-terminal pleckstrin homology (PH) domain of Pob1 is required for Cdc42 binding. Pob1 also binds to For3 through its N-terminal sterile alpha motif (SAM) domain and contributes to the formin localization at the cell tips. The previously described pob1-664 mutant strain (Mol. Biol. Cell. 10, 2745-2757, 1999), which carries a mutation in the PH domain, as well as pob1 mutant strains in which Pob1 lacks the N-terminal region (pob1DeltaN) or the SAM domain (pob1DeltaSAM), have cytoskeletal defects similar to that of cdc42-879 cells. Expression of constitutively active For3DAD* partially restores actin organization in cdc42-879, pob1-664, pob1DeltaN, and pob1DeltaSAM. Therefore, we propose that Pob1 is required for For3 localization to the tips and facilitates Cdc42-mediated relief of For3 autoinhibition to stimulate actin cable formation.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Citoesqueleto/ultraestrutura , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/metabolismo , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , Polaridade Celular , Forminas , Regulação Fúngica da Expressão Gênica , Guanosina Trifosfato/fisiologia , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/química
20.
Mol Biol Cell ; 19(4): 1727-38, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18256290

RESUMO

Schizosaccharomyces pombe Rho GTPases regulate actin cytoskeleton organization and cell integrity. We studied the fission yeast gene SPBC4F6.12 based on its ability to suppress the thermosensitivity of cdc42-1625 mutant strain. This gene, named pxl1(+), encodes a protein with three LIM domains that is similar to paxillin. Pxl1 does not interact with Cdc42 but it interacts with Rho1, and it negatively regulates this GTPase. Fission yeast Pxl1 forms a contractile ring in the cell division region and deletion of pxl1(+) causes a delay in cell-cell separation, suggesting that it has a function in cytokinesis. Pxl1 N-terminal region is required and sufficient for its localization to the medial ring, whereas the LIM domains are necessary for its function. Pxl1 localization requires actin polymerization and the actomyosin ring, but it is independent of the septation initiation network (SIN) function. Moreover, Pxl1 colocalizes and interacts with Myo2, and Cdc15, suggesting that it is part of the actomyosin ring. Here, we show that in cells lacking Pxl1, the myosin ring is not correctly assembled and that actomyosin ring contraction is delayed. Together, these data suggest that Pxl1 modulates Rho1 GTPase signaling and plays a role in the formation and contraction of the actomyosin ring during cytokinesis.


Assuntos
Citocinese/fisiologia , Paxilina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Citocinese/genética , Genes Fúngicos , Complexos Multiproteicos , Mutação , Miosina Tipo II/química , Miosina Tipo II/metabolismo , Paxilina/química , Paxilina/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Temperatura , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA