RESUMO
Exosomes, which are membrane-bound extracellular vesicles (EVs), are generated in the endosomal compartment of almost all eukaryotic cells. They are formed upon the fusion of multivesicular bodies and the plasma membrane and carry proteins, nucleic acids, lipids and other cellular constituents from their parent cells. Multiple factors influence their production including cell stress and injury, humoral factors, circulating toxins, and oxidative stress. They play an important role in intercellular communication, through their ability to transfer their cargo (proteins, lipids, RNAs) from one cell to another. Exosomes have been implicated in the pathophysiology of various diseases including cardiovascular disease (CVD), cancer, kidney disease, and inflammatory conditions. In addition, circulating exosomes may act as biomarkers for diagnostic and prognostic strategies for several pathological processes. In particular exosome-containing miRNAs have been suggested as biomarkers for the diagnosis and prognosis of myocardial injury, stroke and endothelial dysfunction. They may also have therapeutic potential, acting as vectors to deliver therapies in a targeted manner, such as the delivery of protective miRNAs. Transfection techniques are in development to load exosomes with desired cargo, such as proteins or miRNAs, to achieve up-regulation in the host cell or tissue. These advances in the field have the potential to assist in the detection and monitoring progress of a disease in patients during its early clinical stages, as well as targeted drug delivery.
Assuntos
Sistema Cardiovascular , Exossomos , Vesículas Extracelulares , MicroRNAs , Humanos , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sistema Cardiovascular/metabolismo , Proteínas , Biomarcadores/metabolismo , Lipídeos , Vesículas Extracelulares/metabolismoRESUMO
A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.
Assuntos
Hipertensão/etiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Humanos , Hipertensão/metabolismo , Inflamassomos/fisiologia , Rim/metabolismo , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxirredução , Transdução de Sinais/fisiologia , Superóxidos/metabolismo , Doenças Vasculares/metabolismoRESUMO
BACKGROUND: Diabetes is a risk factor for cancer in the general population. However, few data are available on the association between post-transplant diabetes mellitus (PTDM) and cancer after transplantation. METHODS: We analyzed this issue in a Spanish cohort of patients without diabetes before transplantation. PTDM was diagnosed with consensus criteria at 12 months after transplantation and 12 months before the diagnosis of cancer. The association between PTDM and cancer (overall and specific types) was evaluated with regression analysis. RESULTS: During a follow-up of 12 years (interquartile range 8-14), 85 cases of 603 developed cancer (829/100 000/year) and 164 (27%) PTDM. The most frequent cancers were renal cell cancer (RCC) n = 15, 146/cases/100 000/year), lung (n = 12, 117/cases/100 000/year), colon (n = 9, 88/cases/100 000/year) and prostate (n = 9, 88/cases/100 000/year). In logistic regression, PTDM was not associated with cancer. Eight of the 164 patients with PTDM (4.9%) vs 7 of the 439 without PTDM developed RCC (1.6%) (P = .027). In multivariate analysis, PTDM was independently associated with RCC [odds ratio (OR) 2.92, confidence interval (CI) 1.03-8.27], adjusting for smoking (OR 4.020, 95% CI 1.34-12.02) and other covariates. PTDM was not associated with other types of cancer. CONCLUSIONS: Patients with PTDM must be considered a population at risk for RCC and accordingly, the subject of active surveillance.
Assuntos
Carcinoma de Células Renais , Diabetes Mellitus , Neoplasias Renais , Transplante de Rim , Masculino , Humanos , Transplante de Rim/efeitos adversos , Carcinoma de Células Renais/etiologia , Carcinoma de Células Renais/complicações , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/etiologia , Diabetes Mellitus/diagnóstico , Fatores de Risco , Neoplasias Renais/epidemiologia , Neoplasias Renais/etiologia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos RetrospectivosRESUMO
The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars' surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars' surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.
Assuntos
Poeira , Meio Ambiente Extraterreno , AtmosferaRESUMO
OBJECTIVE: The mechanisms involved in NOX5 activation in atherosclerotic processes are not completely understood. The present study tested the hypothesis that lysophosphatidylcholine (LPC), a proatherogenic component of oxLDL, induces endothelial calcium influx, which drives NOX5-dependent reactive oxygen species (ROS) production, oxidative stress, and endothelial cell dysfunction. APPROACH: Human aortic endothelial cells (HAEC) were stimulated with LPC (10-5 M, for different time points). Pharmacological inhibition of NOX5 (Melittin, 10-7 M) and NOX5 gene silencing (siRNA) was used to determine the role of NOX5-dependent ROS production in endothelial oxidative stress induced by LPC. ROS production was determined by lucigenin assay and electron paramagnetic spectroscopy (EPR), calcium transients by Fluo4 fluorimetry, and NOX5 activity and protein expression by pharmacological assays and immunoblotting, respectively. RESULTS: LPC increased ROS generation in endothelial cells at short (15 min) and long (4 h) stimulation times. LPC-induced ROS was abolished by a selective NOX5 inhibitor and by NOX5 siRNA. NOX1/4 dual inhibition and selective NOX1 inhibition only decreased ROS generation at 4 h. LPC increased HAEC intracellular calcium, important for NOX5 activation, and this was blocked by nifedipine and thapsigargin. Bapta-AM, selective Ca2+ chelator, prevented LPC-induced ROS production. NOX5 knockdown decreased LPC-induced ICAM-1 mRNA expression and monocyte adhesion to endothelial cells. CONCLUSION: These results suggest that NOX5, by mechanisms linked to increased intracellular calcium, is key to early LPC-induced endothelial oxidative stress and pro-inflammatory processes. Since these are essential events in the formation and progression of atherosclerotic lesions, the present study highlights an important role for NOX5 in atherosclerosis.
Assuntos
Aterosclerose/enzimologia , Células Endoteliais/efeitos dos fármacos , Lisofosfatidilcolinas/toxicidade , NADPH Oxidase 5/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Aterosclerose/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Adesão Celular , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/metabolismo , NADPH Oxidase 5/antagonistas & inibidores , NADPH Oxidase 5/genética , Interferência de RNARESUMO
OBJECTIVE: Transient receptor potential (TRP) melastatin 7 (TRPM7) cation channel, a dual-function ion channel/protein kinase, regulates vascular smooth muscle cell (VSMC) Mg2+ homeostasis and mitogenic signaling. Mechanisms regulating vascular growth effects of TRPM7 are unclear, but epidermal growth factor (EGF) may be important because it is a magnesiotropic hormone involved in cellular Mg2+ regulation and VSMC proliferation. Here we sought to determine whether TRPM7 is a downstream target of EGF in VSMCs and if EGF receptor (EGFR) through TRPM7 influences VSMC function. Approach and results: Studies were performed in primary culture VSMCs from rats and humans and vascular tissue from mice deficient in TRPM7 (TRPM7+/Δkinase and TRPM7R/R). EGF increased expression and phosphorylation of TRPM7 and stimulated Mg2+ influx in VSMCs, responses that were attenuated by gefitinib (EGFR inhibitor) and NS8593 (TRPM7 inhibitor). Co-immunoprecipitation (IP) studies, proximity ligation assay (PLA) and live-cell imaging demonstrated interaction of EGFR and TRPM7, which was enhanced by EGF. PP2 (c-Src inhibitor) decreased EGF-induced TRPM7 activation and prevented EGFR-TRPM7 association. EGF-stimulated migration and proliferation of VSMCs were inhibited by gefitinib, PP2, NS8593 and PD98059 (ERK1/2 inhibitor). Phosphorylation of EGFR and ERK1/2 was reduced in VSMCs from TRPM7+/Δkinase mice, which exhibited reduced aortic wall thickness and decreased expression of PCNA and Notch 3, findings recapitulated in TRPM7R/R mice. CONCLUSIONS: We show that EGFR directly interacts with TRPM7 through c-Src-dependent processes. Functionally these phenomena regulate [Mg2+]i homeostasis, ERK1/2 signaling and VSMC function. Our findings define a novel signaling cascade linking EGF/EGFR and TRPM7, important in vascular homeostasis.
Assuntos
Fator de Crescimento Epidérmico/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Proteína Tirosina Quinase CSK/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Magnésio/metabolismo , Camundongos Endogâmicos C57BL , Morfogênese , Músculo Liso Vascular/crescimento & desenvolvimento , Fosforilação , Cultura Primária de Células , Ratos Endogâmicos WKYRESUMO
We report on the preparation of colloidosomes formed with a poly(methyl methacrylate-co-butyl acrylate) latex shell, sealed using calcium alginate as a novel nontoxic and biodegradable sealing agent. The aim is to encapsulate enzymes in detergent formulations. The proposed method, with vegetable oil as the continuous phase, avoids the use of harmful organic solvents. Allura Red has been used as a water-soluble dye, in the core, to analyze the influence of variables such as sodium alginate and latex concentrations on the sealing and release profiles. After formation, the capsules were dispersed in either water or propylene glycol. The capsules have been examined using optical, confocal, and scanning electron microscopies. Working with the highest sodium alginate concentration and latex volume, the encapsulation efficiency is between 60 and 80%. Propylene glycol enables a better dispersion of the capsules compared with water. Dye release data have been fitted to exponential and Michaelis-Menten-type equations, leading to kinetic parameters that allow the simulation of the release process.
RESUMO
NEW FINDINGS: What is the topic of this review? This review provides a comprehensive overview of Nox5 from basic biology to human disease and highlights unique features of this Nox isoform What advances does it highlight? Major advances in Nox5 biology relate to crystallization of the molecule and new insights into the pathophysiological role of Nox5. Recent discoveries have unravelled the crystal structure of Nox5, the first Nox isoform to be crystalized. This provides new opportunities to develop drugs or small molecules targeted to Nox5 in an isoform-specific manner, possibly for therapeutic use. Moreover genome wide association studies (GWAS) identified Nox5 as a new blood pressure-associated gene and studies in mice expressing human Nox5 in a cell-specific manner have provided new information about the (patho) physiological role of Nox5 in the cardiovascular system and kidneys. Nox5 seems to be important in the regulation of vascular contraction and kidney function. In cardiovascular disease and diabetic nephropathy, Nox5 activity is increased and this is associated with increased production of reactive oxygen species and oxidative stress implicated in tissue damage. ABSTRACT: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox), comprise seven family members (Nox1-Nox5 and dual oxidase 1 and 2) and are major producers of reactive oxygen species in mammalian cells. Reactive oxygen species are crucially involved in cell signalling and function. All Noxs share structural homology comprising six transmembrane domains with two haem-binding regions and an NADPH-binding region on the intracellular C-terminus, whereas their regulatory systems, mechanisms of activation and tissue distribution differ. This explains the diverse function of Noxs. Of the Noxs, NOX5 is unique in that rodents lack the gene, it is regulated by Ca2+ , it does not require NADPH oxidase subunits for its activation, and it is not glycosylated. NOX5 localizes in the perinuclear and endoplasmic reticulum regions of cells and traffics to the cell membrane upon activation. It is tightly regulated through numerous post-translational modifications and is activated by vasoactive agents, growth factors and pro-inflammatory cytokines. The exact pathophysiological significance of NOX5 remains unclear, but it seems to be important in the physiological regulation of sperm motility, vascular contraction and lymphocyte differentiation, and NOX5 hyperactivation has been implicated in cardiovascular disease, kidney injury and cancer. The field of NOX5 biology is still in its infancy, but with new insights into its biochemistry and cellular regulation, discovery of the NOX5 crystal structure and genome-wide association studies implicating NOX5 in disease, the time is now ripe to advance NOX5 research. This review provides a comprehensive overview of our current understanding of NOX5, from basic biology to human disease, and highlights the unique characteristics of this enigmatic Nox isoform.
Assuntos
NADPH Oxidase 5/genética , Animais , Regulação Enzimológica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas , NADPH Oxidase 5/biossíntese , NADPH Oxidase 5/metabolismo , Bombas de Próton , Espécies Reativas de OxigênioRESUMO
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme that possesses an ion channel permeable to the divalent cations Mg2+, Ca2+, and Zn2+, and an α-kinase that phosphorylates downstream substrates. TRPM7 and its homologue TRPM6 have been implicated in a variety of cellular functions and is critically associated with intracellular signaling, including receptor tyrosine kinase (RTK)-mediated pathways. Emerging evidence indicates that growth factors, such as EGF and VEGF, signal through their RTKs, which regulate activity of TRPM6 and TRPM7. TRPM6 is primarily an epithelial-associated channel, while TRPM7 is more ubiquitous. In this review we focus on TRPM7 and its association with growth factors, RTKs, and downstream kinase signaling. We also highlight how interplay between TRPM7, Mg2+ and signaling kinases influences cell function in physiological and pathological conditions, such as cancer and preeclampsia.
Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Magnésio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/metabolismo , Animais , Feminino , Humanos , Neoplasias/metabolismo , Pré-Eclâmpsia/metabolismo , GravidezRESUMO
BACKGROUND: The aim of this work was to develop a puffed quinoa bar with beehive products of high content of phenolic compounds, based on acceptability and perception of consumers. A rotational central composite design of three variables (honey, pollen and propolis) was used for food product formulation. The responses to optimize were sensorial acceptability and polyphenol content. Next to acceptability a check-all-that-apply (CATA) test was performed with 115 consumers. Preference maps were used to relate acceptability and sensorial attributes of bars that cause rejection or acceptance. RESULTS: The experimental design determined that pollen and propolis significantly increased phenolic content but decreased acceptability of formulations. Preference maps established that attributes like astringency, bitter flavor, pungency and intense yellow color were associated with the low acceptability while attributes of sweetness and weak astringency were related to high acceptance of products. Range of polyphenol content determined in the widely accepted formulations was 2.15-2.91 g kg-1 , significantly higher than commercial products. CONCLUSION: The incorporation of beehive products, in quinoa bars, increased the total polyphenol content and the functional properties, but at the same time reduced the consumer acceptability. © 2017 Society of Chemical Industry.
Assuntos
Chenopodium quinoa/química , Aromatizantes/análise , Aditivos Alimentares/análise , Preferências Alimentares , Mel/análise , Pólen/química , Própole/análise , Chenopodium quinoa/metabolismo , Humanos , Polifenóis/análise , PaladarRESUMO
Recently, anaerobic degradation has become a prevalent alternative for the treatment of wastewater and activated sludge. Consequently, the anaerobic biodegradability of recalcitrant compounds such as some surfactants require a thorough study to avoid their presence in the environment. In this work, the anaerobic biodegradation of amine-oxide-based surfactants, which are toxic to several organisms, was studied by measuring of the biogas production in digested sludge. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R12), Myristamine oxide (AO-R14) and Cocamidopropylamine oxide (AO-cocoamido). Results show that AO-R12 and AO-R14 inhibit biogas production, inhibition percentages were around 90%. AO-cocoamido did not cause inhibition and it was biodegraded until reaching a percentage of 60.8%. Otherwise, we fitted the production of biogas to two kinetic models, to a pseudo first-order model and to a logistic model. Production of biogas during the anaerobic biodegradation of AO-cocoamido was pretty good adjusted to the logistics model. Kinetic parameters were also determined. This modelling is useful to predict their behaviour in wastewater treatment plants and under anaerobic conditions in the environment.
Assuntos
Aminas/química , Óxidos/química , Tensoativos/química , Anaerobiose , Biodegradação Ambiental , Biocombustíveis , Cinética , Propilaminas/química , Esgotos/química , Fatores de Tempo , Águas Residuárias/químicaRESUMO
Elevated blood pressure was an unexpected outcome in some cholesteryl ester transfer protein (CETP) inhibitor trials, possibly due to vascular effects of these drugs. We investigated whether CETP inhibitors (torcetrapib, dalcetrapib, anacetrapib) influence vascular function and explored the putative underlying molecular mechanisms. Resistance arteries and vascular smooth muscle cells (VSMC) from rats, which lack the CETP gene, were studied. CETP inhibitors increased phenylephrine-stimulated vascular contraction (logEC50 (:) 6.6 ± 0.1; 6.4 ± 0.06, and 6.2 ± 0.09 for torcetrapib, dalcetrapib, and anacetrapib, respectively, versus control 5.9 ± 0.05). Only torcetrapib reduced endothelium-dependent vasorelaxation. The CETP inhibitor effects were ameliorated by N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, and by S3I-201 [2-hydroxy-4-[[2-(4-methylphenyl)sulfonyloxyacetyl]amino]benzoic acid], a signal transducer and activator of transcription 3 (STAT3) inhibitor. CETP inhibitors increased the phosphorylation (2- to 3-fold) of vascular myosin light chain (MLC) and myosin phosphatase target subunit 1 (MYPT1) (procontractile proteins) and stimulated ROS production. CETP inhibitors increased the phosphorylation of STAT3 (by 3- to 4-fold), a transcription factor important in cell activation. Activation of MLC was reduced by NAC, GKT137831 [2-(2-chlorophenyl)-4-[3-(dimethylamino)phenyl]-5-methyl-1H-pyrazolo[4,3-c]pyridine-3,6-dione] (Nox1/4 inhibitor), and S3I-201. The phosphorylation of STAT3 was unaffected by NAC and GKT137831. CETP inhibitors did not influence activation of mitogen-activated proteins kinases (MAPK) or c-Src. Our data demonstrate that CETP inhibitors influence vascular function and contraction through redox-sensitive, STAT3-dependent, and MAPK-independent processes. These phenomena do not involve CETP because the CETP gene is absent in rodents. Findings from our study indicate that CETP inhibitors have vasoactive properties, which may contribute to the adverse cardiovascular effects of these drugs such as hypertension.
Assuntos
Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Acetilcisteína/farmacologia , Animais , Células Cultivadas , Sequestradores de Radicais Livres/farmacologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , NADPH Oxidases/metabolismo , Oxirredução , Fosforilação , Proteína Fosfatase 1/efeitos dos fármacos , Pirazóis/farmacologia , Pirazolonas , Piridinas/farmacologia , Piridonas , Ratos , Ratos Endogâmicos WKY , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/genética , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Vasodilatadores/farmacologiaRESUMO
Metabolic dysfunction is associated with adipose tissue inflammation and macrophage infiltration. PAFR (platelet-activating factor receptor) is expressed in several cell types and binds to PAF (platelet-activating factor) and oxidized phospholipids. Engagement of PAFR in macrophages drives them towards the anti-inflammatory phenotype. In the present study, we investigated whether genetic deficiency of PAFR affects the phenotype of ATMs (adipose tissue macrophages) and its effect on glucose and insulin metabolism. PARFKO (PAFR-knockout) and WT (wild-type) mice were fed on an SD (standard diet) or an HFD (high-fat diet). Glucose and insulin tolerance tests were performed by blood monitoring. ATMs were evaluated by FACS for phenotypic markers. Gene and protein expression was investigated by real-time reverse transcription-quantitative PCR and Western blotting respectively. Results showed that the epididymal adipose tissue of PAFRKO mice had increased gene expression of Ccr7, Nos2, Il6 and Il12, associated with pro-inflammatory mediators, and reduced expression of the anti-inflammatory Il10. Moreover, the adipose tissue of PAFRKO mice presented more pro-inflammatory macrophages, characterized by an increased frequency of F4/80(+)CD11c(+) cells. Blood monocytes of PAFRKO mice also exhibited a pro-inflammatory phenotype (increased frequency of Ly6C(+) cells) and PAFR ligands were detected in the serum of both PAFRKO and WT mice. Regarding metabolic parameters, compared with WT, PAFRKO mice had: (i) higher weight gain and serum glucose concentration levels; (ii) decreased insulin-stimulated glucose disappearance; (iii) insulin resistance in the liver; (iv) increased expression of Ldlr in the liver. In mice fed on an HFD, some of these changes were potentiated, particularly in the liver. Thus it seems that endogenous ligands of PAFR are responsible for maintaining the anti-inflammatory profile of blood monocytes and ATMs under physiological conditions. In the absence of PAFR signalling, monocytes and macrophages acquire a pro-inflammatory phenotype, resulting in adipose tissue inflammation and metabolic dysfunction.
Assuntos
Tecido Adiposo/metabolismo , Metabolismo Energético , Inflamação/prevenção & controle , Macrófagos/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Glicemia/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genótipo , Homeostase , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Insulina/sangue , Resistência à Insulina , Ligantes , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fenótipo , Glicoproteínas da Membrana de Plaquetas/deficiência , Glicoproteínas da Membrana de Plaquetas/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Fatores de Tempo , Aumento de PesoRESUMO
Atherosclerosis is an inflammatory disease associated with the activation of innate immune TLRs and nucleotide-binding oligomerization domain-containing protein (NOD)-like receptor pathways. However, the function of most innate immune receptors in atherosclerosis remains unclear. Here, we show that NOD2 is a crucial innate immune receptor influencing vascular inflammation and atherosclerosis severity. 10-week stimulation with muramyl dipeptide (MDP), the NOD2 cognate ligand, aggravated atherosclerosis, as indicated by the augmented lesion burden, increased vascular inflammation and enlarged lipid-rich necrotic cores in Ldlr(-/-) mice. Myeloid-specific ablation of NOD2, but not its downstream kinase, receptor-interacting serine/threonine-protein kinase 2, restrained the expansion of the lipid-rich necrotic core in Ldlr(-/-) chimeric mice. In vitro stimulation of macrophages with MDP enhanced the uptake of oxidized low-density lipoprotein and impaired cholesterol efflux in concordance with upregulation of scavenger receptor A1/2 and downregulation of ATP-binding cassette transporter A1. Ex vivo stimulation of human carotid plaques with MDP led to increased activation of inflammatory signaling pathways p38 MAPK and NF-κB-mediated release of proinflammatory cytokines. Altogether, this study suggests that NOD2 contributes to the expansion of the lipid-rich necrotic core and promotes vascular inflammation in atherosclerosis.
Assuntos
Aterosclerose/imunologia , Aterosclerose/patologia , Imunidade Inata , Inflamação/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Placa Aterosclerótica/imunologia , Animais , Aterosclerose/metabolismo , Western Blotting , Modelos Animais de Doenças , Humanos , Hipercolesterolemia/imunologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Imunidade Inata/imunologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout , Necrose , Proteína Adaptadora de Sinalização NOD2/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Hyperaldosteronism and hypertension were unexpected side effects observed in trials of torcetrapib, a cholesteryl ester-transfer protein (CETP) inhibitor that increases high-density lipoprotein. Given that CETP inhibitors are lipid soluble, accumulate in adipose tissue, and have binding sites for proteins involved in adipogenesis, and that adipocytes are a source of aldosterone, we questioned whether CETP inhibitors (torcetrapib, dalcetrapib, and anacetrapib) influence aldosterone production by adipocytes. Studies were performed using human adipocytes (SW872), which express CETP, and mouse adipocytes (3T3-L1), which lack the CETP gene. Torcetrapib, dalcetrapib, and anacetrapib increased expression of CYP11B2, CYP11B1, and steroidogenic acute regulatory protein, enzymes involved in mineralocorticoid and glucocorticoid generation. These effects were associated with increased reactive oxygen species formation. Torcetrapib, dalcetrapib, and anacetrapib upregulated signal transducer and activator of transcription 3 (STAT3) and peroxisome proliferation-activated receptor-γ, important in adipogenesis, but only torcetrapib stimulated production of chemerin, a proinflammatory adipokine. To determine mechanisms whereby CETP inhibitors mediate effects, cells were pretreated with inhibitors of Nox1/Nox4 [GKT137831; 2-(2-chlorophenyl)-4-[3-(dimethylamino)phenyl]-5-methyl-1H-pyrazolo[4,3-c]pyridine-3,6(2H,5H)-dione], Nox1 (ML171 [2-acetylphenothiazine]), mitochondria (rotenone), and STAT3 (S3I-201 [2-hydroxy-4-(((4-methylphenyl)sulfonyloxy)acetyl)amino)-benzoic acid]). In torcetrapib-stimulated cells, Nox inhibitors, rotenone, and S3I-201 downregulated CYP11B2 and steroidogenic acute regulatory protein and reduced aldosterone. Dalcetrapib and anacetrapib effects on aldosterone were variably blocked by GKT137831, ML171, rotenone, and S3I-201. In adipocytes, torcetrapib, dalcetrapib, and anacetrapib inhibit enzymatic pathways responsible for aldosterone production through Nox1/Nox4- and mitochondrial-generated reactive oxygen species and STAT3. CETP inhibitors also influence adipokine production. These processes may be CETP independent. Our findings identify novel adipocyte-related mechanisms whereby CETP inhibitors increase aldosterone production. Such phenomena may contribute to hyperaldosteronism observed in CETP inhibitor clinical trials.
Assuntos
Adipócitos/efeitos dos fármacos , Aldosterona/biossíntese , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , NADPH Oxidases/metabolismo , Adipócitos/metabolismo , Amidas , Animais , Linhagem Celular , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Ésteres , Humanos , Camundongos , NADPH Oxidases/antagonistas & inibidores , Oxazolidinonas/farmacologia , Fosforilação , Quinolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Compostos de Sulfidrila/farmacologiaRESUMO
OBJECTIVE: Sports practice alters the homeostasis of athletes. To achieve homeostatic equilibrium, the integrated action of the neuroendocrine and immune systems is necessary. Here we studied the relation between cytokines, hormones and mood states in marathon runners. METHODS: A total of 20 male recreational marathon runners (mean age = 35.7 ± 9 years) and 20 male sedentary individuals (mean age = 35.5 ± 7 years) were recruited. We compared the serum levels of growth hormone (GH), cortisol and interleukins 8 and 10 and the amounts of these two cytokines spontaneously produced by peripheral blood mononuclear cells. Blood samples of the sedentary group were collected at rest. Blood from the marathon runners was collected at rest (baseline: 24 h before the race), immediately after a marathon and 72 h after a marathon. Mood state analysis in both groups was performed using the 24-item Brunel Mood Scale (BRUMS). RESULTS: Our results showed that, at rest, levels of interleukins 8 and 10 in the supernatant of culture cells, the serum concentration of GH, and tension and vigour (evaluated using the BRUMS), were significantly higher in athletes compared to sedentary people. Immediately after the race all serum parameters analysed were statistically higher than baseline values. At 72 h after the marathon, serum levels of hormones and interleukins returned to values at rest, but the concentrations of interleukins in the supernatant of culture cells showed a significant reduction compared to values at rest. CONCLUSION: The higher serum levels of GH in athletes at rest and the higher production of cytokines in culture without previous stimulus suggest that marathon runners present mechanisms that may be associated with preparing the body to perform prolonged strenuous exercise, such as a marathon.
Assuntos
Afeto/fisiologia , Citocinas/metabolismo , Hormônio do Crescimento/sangue , Hidrocortisona/sangue , Corrida/fisiologia , Adulto , Células Cultivadas , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Fatores de TempoRESUMO
Platelet-activating factor (PAF) is a lipid mediator with important pro-inflammatory effects, being synthesized by several cell types including kidney cells. Although there is evidence of its involvement in acute renal dysfunction, its role in progressive kidney injury is not completely known. In the present study, we investigated the role of PAF receptor (PAFR) in an experimental model of chronic renal disease. Wild-type (WT) and PAFR knockout (KO) mice underwent unilateral ureter obstruction (UUO), and at kill time, urine and kidney tissue was collected. PAFR KO animals compared with WT mice present: (a) less renal dysfunction, evaluated by urine protein/creatinine ratio; (b) less fibrosis evaluated by collagen deposition, type I collagen, Lysyl Oxidase-1 (LOX-1) and transforming growth factor ß (TGF-ß) gene expression, and higher expression of bone morphogenetic protein 7 (BMP-7) (3.3-fold lower TGF-ß/BMP-7 ratio); (c) downregulation of extracellular matrix (ECM) and adhesion molecule-related machinery genes; and (d) lower levels of pro-inflammatory cytokines. These indicate that PAFR engagement by PAF or PAF-like molecules generated during UUO potentiates renal dysfunction and fibrosis and might promote epithelial-to-mesenchymal transition (EMT). Also, early blockade of PAFR after UUO leads to a protective effect, with less fibrosis deposition. In conclusion, PAFR signaling contributes to a pro-inflammatory environment in the model of obstructive nephropathy, favoring the fibrotic process, which lately will generate renal dysfunction and progressive organ failure.
Assuntos
Rim/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Azepinas , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , Rim/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Nefrite/metabolismo , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Insuficiência Renal Crônica/patologia , Triazóis , Obstrução UreteralRESUMO
Hypoxia, defined as decreased availability of oxygen in the body's tissues, can lead to dyspnea, rapid pulse, syncope, visual dysfunction, mental disturbances such as delirium or euphoria, and even death. It is considered to be one of the most serious hazards during flight. Thus, early and objective detection of the physiological effects of hypoxia is critical to prevent catastrophes in civil and military aviation. The few studies that have addressed the effects of hypoxia on objective oculomotor metrics have had inconsistent results, however. Thus, the question of whether hypoxia modulates eye movement behavior remains open. Here we examined the effects of short-term hypobaric hypoxia on the velocity of saccadic eye movements and intersaccadic drift of Spanish Air Force pilots and flight engineers, compared with a control group that did not experience hypoxia. Saccadic velocity decreased with time-on-duty in both groups, in correlation with subjective fatigue. Intersaccadic drift velocity increased in the hypoxia group only, suggesting that acute hypoxia diminishes eye stability, independently of fatigue. Our results suggest that intersaccadic drift velocity could serve as a biomarker of acute hypoxia. These findings may also contribute to our understanding of the relationship between hypoxia episodes and central nervous system impairments.
Assuntos
Pressão Atmosférica , Hipóxia/fisiopatologia , Movimentos Sacádicos , Adulto , Aeronaves , Estudos de Casos e Controles , Fadiga , Humanos , Hipóxia/diagnóstico , Hipóxia/etiologia , MasculinoAssuntos
Pesquisa Biomédica/tendências , Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Microvasos/metabolismo , Estresse Oxidativo/fisiologia , Animais , Doenças de Pequenos Vasos Cerebrais/diagnóstico , Doenças de Pequenos Vasos Cerebrais/metabolismo , Humanos , Hipertensão/diagnóstico , Microvasos/patologia , OxirreduçãoRESUMO
Vascular injury, characterized by endothelial dysfunction, structural remodelling, inflammation and fibrosis, plays an important role in cardiovascular diseases. Cellular processes underlying this include altered vascular smooth muscle cell (VSMC) growth/apoptosis, fibrosis, increased contractility and vascular calcification. Associated with these events is VSMC differentiation and phenotypic switching from a contractile to a proliferative/secretory phenotype. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Among the many factors involved in vascular injury is Ang II. Ang II, previously thought to be the sole biologically active downstream peptide of the renin-angiotensin system (RAS), is converted to smaller peptides, [Ang III, Ang IV, Ang-(1-7)], that are functional and that modulate vascular tone and structure. The actions of Ang II are mediated via signalling pathways activated upon binding to AT1R and AT2R. AT1R activation induces effects through PLC-IP3-DAG, MAP kinases, tyrosine kinases, tyrosine phosphatases and RhoA/Rho kinase. Ang II elicits many of its (patho)physiological actions by stimulating reactive oxygen species (ROS) generation through activation of vascular NAD(P)H oxidase (Nox). ROS in turn influence redox-sensitive signalling molecules. Here we discuss the role of Ang II in vascular injury, focusing on molecular mechanisms and cellular processes. Implications in vascular remodelling, inflammation, calcification and atherosclerosis are highlighted.