Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Care Med ; 44(6): e383-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26646461

RESUMO

INTERVENTIONS: Helium has been shown to provide neuroprotection in mechanical model of acute ischemic stroke by inducing hypothermia, a condition shown by itself to reduce the thrombolytic and proteolytic properties of tissue plasminogen activator. However, whether or not helium interacts with the thrombolytic drug tissue plasminogen activator, the only approved therapy of acute ischemic stroke still remains unknown. This point is not trivial since previous data have shown the critical importance of the time at which the neuroprotective noble gases xenon and argon should be administered, during or after ischemia, in order not to block tissue plasminogen activator-induced thrombolysis and to obtain neuroprotection and inhibition of tissue plasminogen activator-induced brain hemorrhages. MEASUREMENTS AND MAIN RESULTS: We show that helium of 25-75 vol% inhibits in a concentration-dependent fashion the catalytic and thrombolytic activity of tissue plasminogen activator in vitro and ex vivo. In vivo, in rats subjected to thromboembolic brain ischemia, we found that intraischemic helium at 75 vol% inhibits tissue plasminogen activator-induced thrombolysis and subsequent reduction of ischemic brain damage and that postischemic helium at 75 vol% reduces ischemic brain damage and brain hemorrhages. CONCLUSIONS: In a clinical perspective for the treatment of acute ischemic stroke, these data suggest that helium 1) should not be administered before or together with tissue plasminogen activator therapy due to the risk of inhibiting the benefit of tissue plasminogen activator-induced thrombolysis; and 2) could be an efficient neuroprotective agent if given after tissue plasminogen activator-induced reperfusion.


Assuntos
Antifibrinolíticos/administração & dosagem , Hélio/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Tromboembolia/tratamento farmacológico , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Antifibrinolíticos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/etiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Hélio/farmacologia , Hemorragias Intracranianas/tratamento farmacológico , Masculino , Ratos , Acidente Vascular Cerebral/etiologia , Tromboembolia/complicações
2.
Neurochem Res ; 39(2): 287-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362638

RESUMO

The purpose of this study was to investigate the change in the striatal dopamine (DA) level in freely-moving rat exposed to different partial pressure of oxygen (from 1 to 5 ATA). Some works have suggested that DA release by the substantia nigra pars compacta (SNc) neurons in the striatum could be disturbed by hyperbaric oxygen (HBO) exposure, altering therefore the basal ganglia activity. Such changes could result in a change in glutamatergic and GABAergic control of the dopaminergic neurons into the SNc. Such alterations could provide more information about the oxygen-induced seizures observed at 5 ATA in rat. DA-sensitive electrodes were implanted into the striatum under general anesthesia. After 1 week rest, awaked rats were exposed to oxygen-nitrogen mixture at a partial pressure of oxygen of 1, 2, 3, 4 and 5 ATA. DA level was monitored continuously (every 3 min) by in vivo voltammetry before and during HBO exposure. HBO induced a decrease in DA level in relationship to the increase in partial pressure of oxygen from 1 ATA to 4 ATA (-15 % at 1 ATA, -30 % at 2 ATA, -40 % at 3 ATA, -45 % at 4 ATA), without signs of oxygen toxicity. At 5 ATA, DA level strongly decreases (-75 %) before seizure which occurred after 27 min ± 7 HBO exposure. After the epileptic seizure the decrease in DA level disappeared. These changes and the biphasic effect of HBO were discussed in function of HBO action on neurochemical regulations of the nigro striatal pathway.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Oxigênio/metabolismo , Convulsões/metabolismo , Animais , Eletrodos , Ácido Glutâmico/metabolismo , Oxigenoterapia Hiperbárica , Masculino , Pressão Parcial , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
3.
Ergonomics ; 57(2): 210-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24428598

RESUMO

Certain underwater circumstances carry risk of inert gas narcosis. Impairment of sensorimotor information processing due to narcosis, induced by normobaric nitrous oxide or high partial nitrogen pressure, has been broadly evidenced, by a lengthening of the reaction time (RT). However, the locus of this effect remains a matter of debate. We examined whether inert gas narcosis affects the response-selection stage of sensorimotor information processing. We compared an air normobaric condition with a hyperbaric condition in which 10 subjects were subjected to 6 absolute atmospheres of 8.33% O2 Nitrox. In both conditions, subjects performed a between-hand choice-RT task in which we explicitly manipulated the stimulus-response association rule. The effect of this manipulation (which is supposed to affect response-selection processes) was modified by inert gas narcosis. It is concluded, therefore, that response selection processes are among the loci involved in the effect of inert gas narcosis on information processing.


Assuntos
Comportamento de Escolha/efeitos dos fármacos , Narcose por Gás Inerte/psicologia , Militares/psicologia , Nitrogênio/efeitos adversos , Oxigênio/efeitos adversos , Tempo de Reação/efeitos dos fármacos , Adulto , Pressão do Ar , Mergulho , França , Humanos , Narcose por Gás Inerte/etiologia , Narcose por Gás Inerte/fisiopatologia , Masculino , Medicina Naval , Desempenho Psicomotor/efeitos dos fármacos
4.
Front Physiol ; 14: 1253856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664439

RESUMO

Decompression sickness (DCS) with neurological disorders includes an inappropriate inflammatory response which degenerates slowly, even after the disappearance of the bubbles. There is high inter-individual variability in terms of the occurrence of DCS that could have been mastered by the selection and then the breeding of DCS-resistant rats. We hypothesized the selection of single-nucleotide polymorphisms (SNPs) linked to autoimmunity operated upon a generation of a DCS-resistant strain of rats. We used the candidate gene approach and targeted SNPs linked to the signaling cascade that directly regulates inflammation of innate immunity transiting by the Toll-like receptors. Twenty candidate SNPs were investigated in 36 standard rats and 33 DCS-resistant rats. For the first time, we identify a diplotype (i.e., with matched haplotypes)-when coinherited-that strengthens protection against DCS, which is not strictly homozygous and suggests that a certain tolerance may be considered. We deduced an ideal haplotype of six variants from it (MyD88_50-T, _49-A, _97-C coupled to NFKB_85-T, _69-T, _45-T) linked to the resistant phenotype. Four among the six identified variants are located in pre- and/or post-transcriptional areas regulating MyD88 or NFKB1 expression. Because of missense mutations, the other two variants induce a structural change in the NFKB1 protein complex including one damage alteration according to the Missense3D algorithm. In addition to the MyD88/NFKB1 haplotype providing rats with a strong resistance to DCS, this also highlights the importance that the immune response, here linked to the genetic heritage, can have in the development of DCS and offer a new perspective for therapeutic strategies.

5.
Neurochem Res ; 37(3): 655-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22127756

RESUMO

In rats, a single exposure to 3 MPa nitrogen induces change in motor processes, a sedative action and a decrease in dopamine release in the striatum. These changes due to a narcotic effect of nitrogen have been attributed to a decrease in glutamatergic control and the facilitation of GABAergic neurotransmission involving NMDA and GABA(A) receptors, respectively. After repeated exposure to nitrogen narcosis, a second exposure to 3 MPa increased dopamine levels suggesting a change in the control of the dopaminergic pathway. We investigated the role of the nigral NMDA and GABA(A) receptors in changes in the striatal dopamine levels. Dopamine-sensitive electrodes were implanted into the striatum under general anesthesia, together with a guide-cannula for drug injections into the SNc. Dopamine level was monitored by in vivo voltammetry. The effects of NMDA/GABA(A) receptor agonists (NMDA/muscimol) and antagonists (AP7/gabazine) on dopamine levels were investigated. Rats were exposed to 3 MPa nitrogen before and after five daily exposures to 1 MPa. After these exposures to nitrogen narcosis, gabazine, NMDA and AP7 had no effect on the nitrogen-induced increase in dopamine levels. By contrast, muscimol strongly enhanced the increase in dopamine level induced by nitrogen. Our findings suggest that repeated nitrogen exposure disrupted NMDA receptor function and decreased GABAergic input by modifying GABA(A) receptor sensitivity. These findings demonstrated a change in the mechanism of action of nitrogen at pressure.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Nitrogênio/metabolismo , Animais , Agonistas GABAérgicos/farmacologia , Masculino , Nitrogênio/administração & dosagem , Nitrogênio/toxicidade , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
7.
Proc Natl Acad Sci U S A ; 106(24): 9848-53, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19497871

RESUMO

Erythropoietin receptor (EpoR) binding mediates neuroprotection by endogenous Epo or by exogenous recombinant human (rh)Epo. The level of EpoR gene expression may determine tissue responsiveness to Epo. Thus, harnessing the neuroprotective power of Epo requires an understanding of the Epo-EpoR system and its regulation. We tested the hypothesis that neuronal expression of EpoR is required to achieve optimal neuroprotection by Epo. The ventral limbic region (VLR) in the rat brain was used because we determined that its neurons express minimal EpoR under basal conditions, and they are highly sensitive to excitotoxic damage, such as occurs with pilocarpine-induced status epilepticus (Pilo-SE). We report that (i) EpoR expression is significantly elevated in nearly all VLR neurons when rats are subjected to 3 moderate hypoxic exposures, with each separated by a 4-day interval; (ii) synergistic induction of EpoR expression is achieved in the dorsal hippocampus and neocortex by the combination of hypoxia and exposure to an enriched environment, with minimal increased expression by either treatment alone; and (iii) rhEpo administered after Pilo-SE cannot rescue neurons in the VLR, unless neuronal induction of EpoR is elicited by hypoxia before Pilo-SE. This study thus demonstrates using environmental manipulations in normal rodents, the strict requirement for induction of EpoR expression in brain neurons to achieve optimal neuroprotection. Our results indicate that regulation of EpoR gene expression may facilitate the neuroprotective potential of rhEpo.


Assuntos
Eritropoetina/farmacologia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptores da Eritropoetina/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Eritropoetina/metabolismo , Regulação da Expressão Gênica , Hipóxia/metabolismo , Masculino , Pilocarpina/farmacologia , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/fisiologia , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia
8.
Biomedicines ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140160

RESUMO

Climbers and aviators are exposed to severe hypoxia at high altitudes, whereas divers are exposed to hyperoxia at depth. The aim of this study was to report changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures. At high altitudes, the increased adenosine concentration contributes to brain protection against hypoxia through various mechanisms such as stimulation of glycogenolysis for ATP production, reduction in neuronal energy requirements, enhancement in 2,3-bisphosphoglycerate production, and increase in cerebral blood flow secondary to vasodilation of cerebral arteries. In the context of mountain illness, the increased level of A2AR expression leads to glial dysfunction through neuroinflammation and is involved in the pathogenesis of neurological disorders. Nonetheless, a high level of adenosine concentration can protect against high-altitude pulmonary edema via a decrease in pulmonary arterial pressure. The adenosinergic system is also involved in the acclimatization phenomenon induced by prolonged exposure to altitude hypoxia. During hyperoxic exposure, decreased extracellular adenosine and low A2A receptor expression contribute to vasoconstriction. The resulting decrease in cerebral blood flow is considered a preventive phenomenon against cerebral oxygen toxicity through the decrease in oxygen delivery to the brain. With regard to lung oxygen toxicity, hyperoxia leads to an increase in extracellular adenosine, which acts to preserve pulmonary barrier function. Changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures frequently have a benefit in decreasing the risk of adverse effects.

9.
Front Physiol ; 13: 882944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655958

RESUMO

On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1ß and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management.

10.
Glia ; 59(5): 750-70, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21360755

RESUMO

Olfactory ensheathing cells (OECs) are unique glia found only in the olfactory system. They retain exceptional plasticity and support olfactory neurogenesis and retargeting across the PNS:CNS boundary in the olfactory system. OECs have been shown to improve functional outcome when transplanted into rodents with spinal cord injury. The growth-promoting properties of implanted OECs encompass their ability to migrate through the scar tissue and render it more permissive for axonal outgrowth, but the underlying molecular mechanisms remain poorly understood. OECs appear to regulate molecules of the extracellular matrix (ECM) that inhibit axonal growth. Among the proteins that have the potential to promote cell migration, axonal regeneration and remodeling of the ECM are matrix metalloproteinases (MMPs), a family of endopeptidases that cleave matrix, soluble, and membrane-bound proteins and that are regulated by their endogenous inhibitors, the tissue inhibitors of MMPs (TIMPs). Little is known about MMP/TIMP trafficking, secretion, and role in OECs. Using a combination of cell biology, biochemistry, pharmacology, and imaging techniques, we show that MMP-2 and MMP-9 are expressed and proteolytically active in the olfactory epithelium and in particular in the OECs of the lamina propria. These proteinases and regulatory proteins such as MT1-MMP and TIMP-2 are expressed in cultured OECs. MMPs exhibit nuclear localization and vesicular trafficking and secretion, with distribution along microtubules and microfilaments and co-localization with the molecular motor protein kinesin. Finally, we show that MMPs are involved in migration of OECs in vitro on different ECM substrates.


Assuntos
Movimento Celular/fisiologia , Metaloproteinase 2 da Matriz/metabolismo , Neuroglia/metabolismo , Mucosa Olfatória/metabolismo , Animais , Western Blotting , Células Cultivadas , Feminino , Imunofluorescência , Imuno-Histoquímica , Metaloproteinase 9 da Matriz/metabolismo , Mucosa Olfatória/citologia , Transporte Proteico/fisiologia , Ratos , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-2/metabolismo
11.
Anesthesiology ; 115(5): 1044-53, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21952256

RESUMO

BACKGROUND: Preclinical evidence in rodents has suggested that inert gases, such as xenon or nitrous oxide, may be promising neuroprotective agents for treating acute ischemic stroke. This has led to many thinking that clinical trials could be initiated in the near future. However, a recent study has shown that xenon interacts with tissue-type plasminogen activator (tPA), a well-recognized approved therapy of acute ischemic stroke. Although intraischemic xenon inhibits tPA-induced thrombolysis and subsequent reduction of brain damage, postischemic xenon virtually suppresses both ischemic brain damage and tPA-induced brain hemorrhages and disruption of the blood-brain barrier. The authors investigated whether nitrous oxide could also interact with tPA. METHODS: The authors performed molecular modeling of nitrous oxide binding on tPA, characterized the concentration-dependent effects of nitrous oxide on tPA enzymatic and thrombolytic activity in vitro, and investigated the effects of intraischemic and postischemic nitrous oxide in a rat model of thromboembolic acute ischemic stroke. RESULTS: The authors demonstrate nitrous oxide is a tPA inhibitor, intraischemic nitrous oxide dose-dependently inhibits tPA-induced thrombolysis and subsequent reduction of ischemic brain damage, and postischemic nitrous oxide reduces ischemic brain damage, but in contrast with xenon, it increases brain hemorrhages and disruption of the blood-brain barrier. CONCLUSIONS: In contrast with previous studies using mechanical acute stroke models, these data obtained in a clinically relevant rat model of thromboembolic stroke indicate that nitrous oxide should not be considered a good candidate agent for treating acute ischemic stroke compared with xenon.


Assuntos
Óxido Nitroso/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Tromboembolia/tratamento farmacológico , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Animais , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Isoflurano/farmacologia , Masculino , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Óxido Nitroso/metabolismo , Ratos , Ratos Sprague-Dawley , Ativador de Plasminogênio Tecidual/metabolismo , Xenônio/farmacologia
12.
Front Med (Lausanne) ; 8: 742703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778304

RESUMO

Background: Diagnosing diaphragm dysfunction in the absence of complete paralysis remains difficult. The aim of the present study was to assess the normal values of the thickness and the inspiratory thickening of both hemidiaphragms as measured by ultrasonography in healthy volunteers while in a seated position. Methods: Healthy volunteers with a normal pulmonary function test were recruited. The diaphragmatic thickness was measured on both sides at the zone of apposition of the diaphragm to the rib cage during quiet breathing at end-expiration, end-inspiration, and after maximal inspiration. The thickening ratio, the thickening fraction, and the thickness at end-inspiration divided by the thickness at deep breathing were determined. The mean values and the lower and upper limits of normal were determined for men and women. Results: 200 healthy volunteers (100 men and 100 women) were included in the study. The statistical analysis revealed that women had a thinner hemidiaphragm than men on both sides and at the various breathing times studied. The lower limit of normality of the diaphragm thickness measured at end-expiration was estimated to be 1.3 mm in men and 1.1 mm in women, on both sides. The thickening fraction did not differ significantly between men and women. In men, it ranged from 60 to 260% on the left side and from 57 to 200% on the right side. In women, it ranged from 58 to 264% on the left side and from 60 to 229% on the right side. The lower limits of normality of the thickening fraction were determined to be 40 and 39% in men and 39 and 48% in women for the right and left hemidiaphragms, respectively. The upper limit for normal of the mean of both sides of the ratio thickness at end-inspiration divided by the thickness at deep breathing was determined to be 0.78 in women and 0.79 in men. Conclusion: The normal values of thickness and the indexes of diaphragmatic function should help clinicians with detecting diaphragm atrophy and dysfunction.

13.
Sci Rep ; 11(1): 8317, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859311

RESUMO

On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the fecal metabolome from rat caecum. On the other side, there is high inter-individual variability in terms of occurrence of DCS. One could wonder whether the fecal metabolome could be linked to the DCS-susceptibility. We decided to study male and female rats selected for their resistance to decompression sickness, and we hypothesize a strong impregnation concerning the fecal metabolome. The aim is to verify whether the rats resistant to the accident have a fecal metabolomic signature different from the stem generations sensitive to DCS. 39 DCS-resistant animals (21 females and 18 males), aged 14 weeks, were compared to 18 age-matched standard Wistar rats (10 females and 8 males), i.e., the same as those we used for the founding stock. Conventional and ChemRICH approaches helped the metabolomic interpretation of the 226 chemical compounds analyzed in the cecal content. Statistical analysis shows a panel of 81 compounds whose expression had changed following the selection of rats based on their resistance to DCS. 63 compounds are sex related. 39 are in common. This study shows the spectral fingerprint of the fecal metabolome from the caecum of a strain of rats resistant to decompression sickness. This study also confirms a difference linked to sex in the metabolome of non-selected rats, which disappear with selective breeding. Results suggest hormonal and energetic reshuffle, including steroids sugars or antibiotic compounds, whether in the host or in the microbial community.


Assuntos
Ceco/metabolismo , Doença da Descompressão/genética , Doença da Descompressão/metabolismo , Predisposição Genética para Doença/genética , Metaboloma/genética , Animais , Feminino , Masculino , Ratos , Ratos Wistar , Caracteres Sexuais
14.
Glia ; 58(3): 344-66, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19780201

RESUMO

Astrocytes play an active role in the central nervous system and are critically involved in astrogliosis, a homotypic response of these cells to disease, injury, and associated neuroinflammation. Among the numerous molecules involved in these processes are the matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, secreted or membrane-bound, that regulate by proteolytic cleavage the extracellular matrix, cytokines, chemokines, cell adhesion molecules, and plasma membrane receptors. MMP activity is tightly regulated by the tissue inhibitors of MMPs (TIMPs), a family of secreted multifunctional proteins. Astrogliosis in vivo and astrocyte reactivity induced in vitro by proinflammatory cues are associated with modulation of expression and/or activity of members of the MMP/TIMP system. However, nothing is known concerning the intracellular distribution and secretory pathways of MMPs and TIMPs in astrocytes. Using a combination of cell biology, biochemistry, fluorescence and electron microscopy approaches, we investigated in cultured reactive astrocytes the intracellular distribution, transport, and secretion of MMP-2, MMP-9, TIMP-1, and TIMP-2. MMP-2 and MMP-9 demonstrate nuclear localization, differential intracellular vesicular distribution relative to the myosin V and kinesin molecular motors, and LAMP-2-labeled lysosomal compartment, and we show vesicular secretion for MMP-2, MMP-9, and their inhibitors. Our results suggest that these proteinases and their inhibitors use different pathways for trafficking and secretion for distinct astrocytic functions.


Assuntos
Astrócitos/enzimologia , Encefalite/enzimologia , Gliose/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Vesículas Transportadoras/enzimologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/ultraestrutura , Compartimento Celular/fisiologia , Células Cultivadas , Encefalite/fisiopatologia , Gliose/fisiopatologia , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Camundongos , Proteínas Motores Moleculares/metabolismo , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Vesículas Transportadoras/ultraestrutura
15.
Neurochem Res ; 35(5): 718-26, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20111995

RESUMO

Previous microdialysis studies performed in rats have revealed a decrease of striatal dopamine and glutamate induced by nitrogen narcosis. We sought to establish the hypothetical role of the glutamatergic corticostriatal pathway because of the glutamate deficiency which occurs in the basal ganglia in this hyperbaric syndrome. Retrodialysis with 1 mM of Saclofen and 100 mM of KCl in the prefrontal cortex under normobaric conditions led to an increase in striatal levels of glutamate by 95.2% and no changes in dopamine levels. Under 3 MPa of nitrogen and with the infusion, the rate of striatal glutamate decreased by 51.3%, to a greater extent than under pressurised nitrogen alone (-23.8%). The rate of dopamine decreased, which also occurred under pressurised nitrogen (-36.9 and -31.4%, respectively). In conclusion, the function of the corticostriatal pathway is affected by nitrogen under pressure. This suggests that the nitrogen-induced break point seems to be located at the glutamatergic striatopetal neurons.


Assuntos
Corpo Estriado/fisiologia , Ácido Glutâmico/metabolismo , Narcose por Gás Inerte/fisiopatologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Baclofeno/análogos & derivados , Baclofeno/farmacologia , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Glutamina/metabolismo , Ácido Homovanílico/metabolismo , Oxigenoterapia Hiperbárica , Narcose por Gás Inerte/metabolismo , Masculino , Nitrogênio/farmacologia , Pressão , Ratos , Ratos Sprague-Dawley
16.
Sci Rep ; 10(1): 15996, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994526

RESUMO

Massive bubble formation after diving can lead to decompression sickness (DCS), which can result in neurological disorders. We demonstrated that hydrogen production from intestinal fermentation could exacerbate DCS in rats fed with a standard diet. The aim of this study is to identify a fecal metabolomic signature that may result from the effects of a provocative hyperbaric exposure. The fecal metabolome was studied in two groups of rats previously fed with maize or soy in order to account for diet effects. 64 animals, weighing 379.0_20.2 g on the day of the dive, were exposed to the hyperbaric protocol. The rats were separated into two groups: 32 fed with maize (Div MAIZE) and 32 fed with soy (Div SOY). Gut fermentation before the dive was estimated by measuring exhaled hydrogen. Following hyperbaric exposure, we assessed for signs of DCS. Blood was analyzed to assay inflammatory cytokines. Conventional and ChemRICH approaches helped the metabolomic interpretation of the cecal content. The effect of the diet is very marked at the metabolomic level, a little less in the blood tests, without this appearing strictly in the clinic status. Nevertheless, 37 of the 184 metabolites analyzed are linked to clinical status. 35 over-expressed compounds let suggest less intestinal absorption, possibly accompanied by an alteration of the gut microbial community, in DCS. The decrease in another metabolite suggests hepatic impairment. This spectral difference of the ceca metabolomes deserves to be studied in order to check if it corresponds to functional microbial particularities.


Assuntos
Ceco/metabolismo , Doença da Descompressão/metabolismo , Metabolômica/métodos , Doenças do Sistema Nervoso/metabolismo , Ração Animal , Animais , Cromatografia Líquida , Citocinas/sangue , Doença da Descompressão/complicações , Modelos Animais de Doenças , Microbioma Gastrointestinal , Masculino , Espectrometria de Massas , Doenças do Sistema Nervoso/etiologia , Ratos
17.
FASEB J ; 22(4): 1275-86, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18024836

RESUMO

Brain insults are a major cause of acute mortality and chronic morbidity. Given the largely ineffective current therapeutic strategies, the development of new and efficient therapeutic interventions is clearly needed. A series of previous investigations has shown that the noble and anesthetic gas xenon, which has low-affinity antagonistic properties at the N-methyl-D-aspartate (NMDA) receptor, also exhibits potentially neuroprotective properties with no proven adverse side effects. Surprisingly and in contrast with most drugs that are being developed as therapeutic agents, the dose-response neuroprotective effect of xenon has been poorly studied, although this effect could be of major critical importance for its clinical development as a neuroprotectant. Here we show, using ex vivo and in vivo models of excitotoxic insults and transient brain ischemia, that xenon, administered at subanesthetic doses, offers global neuroprotection from reduction of neurotransmitter release induced by ischemia, a critical event known to be involved in excitotoxicity, to reduction of subsequent cell injury and neuronal death. Maximal neuroprotection was obtained with xenon at 50 vol%, a concentration at which xenon further exhibited significant neuroprotective effects in vivo even when administered up to 4 h after intrastriatal NMDA injection and up to at least 2 h after induction of transient brain ischemia.


Assuntos
Ataque Isquêmico Transitório/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Xenônio/uso terapêutico , Animais , Dopamina/metabolismo , Masculino , N-Metilaspartato/farmacologia , Ratos , Ratos Sprague-Dawley
18.
Neurochem Res ; 34(5): 835-44, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18751893

RESUMO

Exposure to nitrogen-oxygen mixture at high pressure induces narcosis, which can be considered as a first step toward general anaesthesia. Narcotic potencies of inert gases are attributed to their lipid solubility. Nitrogen narcosis induces cognitive and motor disturbances that occur from 0.3 MPa in man and from 1 MPa in rats. Neurochemical studies performed in rats up to 3 MPa have shown that nitrogen pressure decreases striatal dopamine release like argon, another inert gas, or nitrous oxide, an anaesthetic gas. Striatal dopamine release is under glutamatergic and other amino acid neurotransmission regulations. The aim of this work was to study the effects of nitrogen at 3 MPa on striatal amino acid levels and to compare to those of 3 MPa of helium which is not narcotic at this pressure, by using a new technique of microdialysis samples extraction under hyperbaric conditions, in freely moving rats. Amino acids were analysed by HPLC coupled to fluorimetric detection in order to appreciate glutamate, aspartate, glutamine and asparagine levels. Nitrogen-oxygen mixture exposure at 3 MPa decreased glutamate, glutamine and asparagine concentrations. In contrast, with helium-oxygen mixture, glutamate and aspartate levels were increased during the compression phase but not during the stay at maximal pressure. Comparison between nitrogen and helium highlighted the narcotic effects of nitrogen at pressure. As a matter of fact, nitrogen induces a reduction in glutamate and in other amino acids that could partly explain the decrease in striatal dopamine level as well as the motor and cognitive disturbances reported in nitrogen narcosis.


Assuntos
Aminoácidos/metabolismo , Corpo Estriado/metabolismo , Hélio , Narcose por Gás Inerte/metabolismo , Nitrogênio , Animais , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Masculino , Microdiálise , Pressão , Ratos , Ratos Sprague-Dawley
19.
Mol Cell Neurosci ; 39(4): 549-68, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18817873

RESUMO

Matrix metalloproteinases (MMPs) are endopeptidases that cleave matrix, soluble and membrane-bound proteins and are regulated by their endogenous inhibitors the tissue inhibitors of MMPs (TIMPs). Nothing is known about MMP/TIMP trafficking and secretion in neuronal cells. We focussed our attention on the gelatinases MMP-2 and MMP-9, and their inhibitor TIMP-1. MMPs and TIMP-1 fused to GFP were expressed in N2a neuroblastoma and primary neuronal cells to study trafficking and secretion using real time video-microscopy, imaging, electron microscopy and biochemical approaches. We show that MMPs and TIMP-1 are secreted in 160-200 nm vesicles in a Golgi-dependent pathway. These vesicles distribute along microtubules and microfilaments, co-localise differentially with the molecular motors kinesin and myosin Va and undergo both anterograde and retrograde trafficking. MMP-9 retrograde transport involves the dynein/dynactin molecular motor. In hippocampal neurons, MMP-2 and MMP-9 vesicles are preferentially distributed in the somato-dendritic compartment and are found in dendritic spines. Non-transfected hippocampal neurons also demonstrate vesicular secretion of MMP-2 in both its pro- and active forms and gelatinolytic activity localised within dendritic spines. Our results show differential trafficking of MMP and TIMP-1-containing vesicles in neuronal cells and suggest that these vesicles could play a role in neuronal and synaptic plasticity.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neurônios/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Transporte Biológico/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Camundongos , Proteínas Motores Moleculares/metabolismo , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Inibidor Tecidual de Metaloproteinase-1/genética
20.
Front Physiol ; 10: 749, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281261

RESUMO

Introduction: Previous studies have suggested that the circulatory system was involved in the production of circulatory bubbles after diving. This study was designed to research the cardio-vascular function characteristics related to the production of high bubble grades after diving. Methods: Thirty trained divers were investigated both at baseline and after a 30-msw SCUBA dive. At baseline, the investigations included blood pressure measurement, echocardiography, and assessment of aerobic fitness using VO2 peak measurement. Blood samples were taken at rest, to measure the plasma concentration of NOx and endothelin-1. After diving, circulating bubbles were detected in the pulmonary artery by pulsed Doppler at 20-min intervals during the 90 min after surfacing. The global bubble quantity production was estimated by the KISS index. Results: Divers with a high bubble grade (KISS > 7.5) had systolic blood pressure, pulse pressure, weight, and height significantly higher than divers with a low bubble grade. By contrast, total arterial compliance, plasma NOx level, and percentage of predicted value of peak oxygen uptake were significantly lower in divers with a high bubble grade. Cardiac dimensions, left ventricular function, and plasma endothelin-1 concentration were not significantly different between groups. The multivariate analysis identified blood pressure as the main contributor of the quantity of bubble production. The model including pulse pressure, plasma NOx level, and percentage of predicted value of peak oxygen uptake has an explanatory power of 49.22%. Conclusion: The viscoelastic properties of the arterial tree appeared to be an important contributor to the circulating bubble production after a dive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA