Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Pharmacol Sci ; 147(1): 156-167, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34294367

RESUMO

We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-kinase (PI3K)-blocking autophagy inhibitor, on cancer cell death induced by simultaneous inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. 2DG/rotenone reduced ATP levels and increased mitochondrial superoxide production, causing mitochondrial swelling and necrotic death in various cancer cell lines. 2DG/rotenone failed to increase proautophagic beclin-1 and autophagic flux in melanoma cells despite the activation of AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin complex 1 (mTORC1). 3MA, but not autophagy inhibition with other PI3K and lysosomal inhibitors, attenuated 2DG/rotenone-induced mitochondrial damage, oxidative stress, ATP depletion, and cell death, while antioxidant treatment mimicked its protective action. The protection was not mediated by autophagy upregulation via class I PI3K/Akt inhibition, as it was preserved in cells with genetically inhibited autophagy. 3MA increased AMPK and mTORC1 activation in energy-stressed cells, but neither AMPK nor mTORC1 inhibition reduced its cytoprotective effect. 3MA reduced JNK activation, and JNK pharmacological/genetic suppression mimicked its mitochondria-preserving and cytoprotective activity. Therefore, 3MA prevents energy stress-triggered cancer cell death through autophagy-independent mechanisms possibly involving JNK suppression and decrease of oxidative stress. Our results warrant caution when using 3MA as an autophagy inhibitor.


Assuntos
Adenina/análogos & derivados , Autofagia/efeitos dos fármacos , Melanoma/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adenina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Desoxiglucose/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Melanoma/metabolismo , Melanoma Experimental , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Dilatação Mitocondrial , Necrose , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Rotenona/farmacologia
2.
BMC Nephrol ; 20(1): 281, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349820

RESUMO

BACKGROUND: Peripheral arterial disease (PAD) is common in patients with end-stage renal disease on hemodialysis, but is frequently underdiagnosed. The risk factors for PAD are well known within the general population, but they differ somewhat in hemodialysis patients. This study aimed to determine the prevalence of PAD and its risk factors in patients on hemodialysis. METHODS: This cross-sectional study included 156 hemodialysis patients. Comorbidities and laboratory parameters were analyzed. Following clinical examinations, the ankle-brachial index was measured in all patients. PAD was diagnosed based on the clinical findings, ankle-brachial index < 0.9, and PAD symptoms. RESULTS: PAD was present in 55 of 156 (35.3%; 95% CI, 27.7-42.8%) patients. The patients with PAD were significantly older (67 ± 10 years vs. 62 ± 11 years, p = 0.014), more likely to have diabetes mellitus (p = 0.022), and anemia (p = 0.042), and had significantly lower serum albumin (p = 0.005), total cholesterol (p = 0.024), and iron (p = 0.004) levels, higher glucose (p = 0.002) and C-reactive protein (p < 0.001) levels, and lower dialysis adequacies (p = 0.040) than the patients without PAD. Multivariate analysis showed higher C-reactive protein level (odds ratio [OR], 1.03; 95% confidence interval [CI], 1.00-1.06; p = 0.030), vascular access by Hickman catheter (OR, 4.66; 95% CI, 1.03-21.0; p = 0.045), and symptoms of PAD (OR, 5.20; 95% CI, 2.60-10.4; p < 0.001) as independent factors associated with PAD in hemodialysis patients. CONCLUSION: The prevalence of PAD was high among patients with end-stage renal disease on hemodialysis. Symptoms of PAD, higher C-reactive protein levels, and Hickman vascular access were independent predictors of PAD in patients on hemodialysis.


Assuntos
Falência Renal Crônica/terapia , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/epidemiologia , Diálise Renal , Idoso , Estudos Transversais , Feminino , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/etiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Diálise Renal/efeitos adversos , Fatores de Risco
3.
Med Princ Pract ; 27(4): 378-386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29794470

RESUMO

OBJECTIVE: To investigate the association of high baseline serum levels of metalloproteinases-3 (MMP-3) with structural damage to hand and feet joints, assessed by ultrasonography (US), in patients with early, treatment-naïve rheumatoid arthritis (RA), without initial X-ray-visible erosions, during 24 months follow-up. METHODS: Sixty-three early RA (European League Against Rheumatism/American College of Rheumatology 2010), disease-modifying anti-rheumatic drugs/glucocorticoid naïve patients (mean age 53.4 ± 14.1) with symptom duration ≤12 months, had baseline serum levels of MMP-3 tested. OMERACT US group definition was used to detect the presence, as well as longitudinal diameter of erosions by US at study entry and after 24 months, at the level of wrists, metacarpophalangeal (MCP2/MCP5) joints of both hands, and fifth metatarsophalangeal joints. RESULTS: Complete data were collected from 52 out of 63 patients. High baseline serum levels of MMP-3 (MMP-3-positive) were found in 46/63 patients. 122 bone erosions in total (1.9 bone erosions/patients) were detected by US at baseline visit and 213 erosions (4.3/patients) after 24 months. MMP-3 positive patients had significantly higher total number of erosions than MMP-3-negative (p = 0.039) and higher increase in size of bone erosions in the feet but not in the hand joints after follow-up (OR 4.82 [1.23-18.9], p = 0.024; OR 1.17 [0.320-4.26], p = 0.816 respectively). CONCLUSION: After 2 years of follow-up, US assessment showed a higher number of new bone erosions in MMP-3-positive compared to MMP-3-negative patients with early RA and no visible initial radiographic changes. High baseline levels of MMP-3 predict significantly higher structural damage progression at the level of feet, but not at the level of hand joints.


Assuntos
Artrite Reumatoide/sangue , Artrite Reumatoide/diagnóstico por imagem , Metaloproteinases da Matriz/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Progressão da Doença , Feminino , Pé/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ultrassonografia , Articulação do Punho/fisiopatologia , Adulto Jovem
4.
J Biol Chem ; 291(44): 22936-22948, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27587392

RESUMO

We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.


Assuntos
Desoxiglucose/farmacologia , Glioma/metabolismo , Glicólise/efeitos dos fármacos , Imidazóis/farmacologia , Lisossomos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sinergismo Farmacológico , Glioma/tratamento farmacológico , Glioma/fisiopatologia , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos
5.
Biomed Microdevices ; 18(2): 37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27106025

RESUMO

Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1-8 min) or nanocurcumin (1.25-10 µg/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of c-Jun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK- and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Luz , Nanopartículas/química , Solventes/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Transporte Biológico/efeitos da radiação , Caspase 3/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Curcumina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Tamanho da Partícula
6.
Exp Cell Res ; 326(1): 90-102, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24907655

RESUMO

We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Idarubicina/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Serina-Treonina Quinases TOR/metabolismo , Adulto , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Proliferação de Células/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
7.
Med Res Rev ; 34(4): 744-67, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24123125

RESUMO

Macroautophagy (hereafter referred to as autophagy) is an evolutionary conserved catabolic process in which the cytoplasmic content is sequestered and degraded by the lysosomal machinery in order to maintain cellular homeostasis or provide energy during metabolic and hypoxic stress. It also represents an important component of the host response against infectious agents, performing surveillance and effector functions involved in detection and clearance of pathogens, including viruses. Moreover, it appears that autophagy plays a major role in determining the fate of both virally infected and uninfected cells by blocking or promoting their death in a virus- and cell-type-dependent manner. We here review the current knowledge on the complex involvement of autophagy in survival and death of the host cells during viral infection, focusing on the molecular mechanisms underlying viral modulation of autophagic response and its interference with the cell death pathways. We also discuss a possible significance of the autophagy-dependent modulation of cell death for the outcome and therapy of viral infections, emphasizing the need for a time- and cell-type-dependent fine-tuning of the autophagic response in achieving an optimal balance between beneficial and adverse effects.


Assuntos
Autofagia , Viroses/patologia , Viroses/terapia , Vírus/metabolismo , Animais , Humanos
8.
Biochim Biophys Acta ; 1822(11): 1826-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22917563

RESUMO

The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3ß shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neuroblastoma/metabolismo , Oxidopamina/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Acetilcisteína/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Autofagia/genética , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , RNA Interferente Pequeno , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteína Sequestossoma-1 , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Pharmaceutics ; 15(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37514033

RESUMO

Graphene-based nanomaterials (GNMs), including graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots, may have direct anticancer activity or be used as nanocarriers for antitumor drugs. GNMs usually enter tumor cells by endocytosis and can accumulate in lysosomes. This accumulation prevents drugs bound to GNMs from reaching their targets, suppressing their anticancer effects. A number of chemical modifications are made to GNMs to facilitate the separation of anticancer drugs from GNMs at low lysosomal pH and to enable the lysosomal escape of drugs. Lysosomal escape may be associated with oxidative stress, permeabilization of the unstable membrane of cancer cell lysosomes, release of lysosomal enzymes into the cytoplasm, and cell death. GNMs can prevent or stimulate tumor cell death by inducing protective autophagy or suppressing autolysosomal degradation, respectively. Furthermore, because GNMs prevent bound fluorescent agents from emitting light, their separation in lysosomes may enable tumor cell identification and therapy monitoring. In this review, we explain how the characteristics of the lysosomal microenvironment and the unique features of tumor cell lysosomes can be exploited for GNM-based cancer therapy.

10.
Cells ; 12(9)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174682

RESUMO

As autophagy can promote or inhibit inflammation, we examined autophagy-inflammation interplay in COVID-19. Autophagy markers in the blood of 19 control subjects and 26 COVID-19 patients at hospital admission and one week later were measured by ELISA, while cytokine levels were examined by flow cytometric bead immunoassay. The antiviral IFN-α and proinflammatory TNF, IL-6, IL-8, IL-17, IL-33, and IFN-γ were elevated in COVID-19 patients at both time points, while IL-10 and IL-1ß were increased at admission and one week later, respectively. Autophagy markers LC3 and ATG5 were unaltered in COVID-19. In contrast, the concentration of autophagic cargo receptor p62 was significantly lower and positively correlated with TNF, IL-10, IL-17, and IL-33 at hospital admission, returning to normal levels after one week. The expression of SARS-CoV-2 proteins NSP5 or ORF3a in THP-1 monocytes caused an autophagy-independent decrease or autophagy-inhibition-dependent increase, respectively, of intracellular/secreted p62, as confirmed by immunoblot/ELISA. This was associated with an NSP5-mediated decrease in TNF/IL-10 mRNA and an ORF3a-mediated increase in TNF/IL-1ß/IL-6/IL-10/IL-33 mRNA levels. A genetic knockdown of p62 mimicked the immunosuppressive effect of NSP5, and a p62 increase in autophagy-deficient cells mirrored the immunostimulatory action of ORF3a. In conclusion, the proinflammatory autophagy receptor p62 is reduced inacute COVID-19, and the balance between autophagy-independent decrease and autophagy blockade-dependent increase of p62 levels could affect SARS-CoV-induced inflammation.


Assuntos
COVID-19 , Inflamação , Humanos , Autofagia , COVID-19/patologia , Inflamação/metabolismo , Interleucina-10/sangue , Interleucina-17/sangue , Interleucina-33/sangue , Interleucina-6/sangue , RNA Mensageiro , SARS-CoV-2
11.
Pharmacol Res ; 65(1): 111-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21871960

RESUMO

The role of autophagy, a process in which the cell self-digests its own components, was investigated in glioma cell death induced by the hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase-inhibiting drug simvastatin. Induction of autophagy and activation of autophagy-regulating signalling pathways were analyzed by immunoblotting. Flow cytometry/fluorescent microscopy was used to assess autophagy-associated intracellular acidification and apoptotic markers (phosphatidylserine exposure, DNA fragmentation and caspase activation). Cell viability was determined by crystal violet, MTT or LDH release assay. Simvastatin treatment of U251 and C6 glioma cell lines caused the appearance of autophagolysosome-like intracytoplasmic acidic vesicles. The induction of autophagy in U251 cells was confirmed by the upregulation of autophagosome-associated LC3-II and pro-autophagic beclin-1, as well as by the downregulation of the selective autophagic target p62. Simvastatin induced the activation of AMP-activated protein kinase (AMPK) and its target Raptor, while simultaneously downregulating activation of Akt. Mammalian target of rapamycin (mTOR), a major AMPK/Akt downstream target and a major negative autophagy regulator, and its substrate p70 S6 kinase 1 were also inhibited by simvastatin. Mevalonate, the product of HMG-CoA reductase enzymatic activity, AMPK siRNA or pharmacological inactivation of AMPK with compound C suppressed, while the inhibitors of Akt (10-DEBC hydrochloride) and mTOR (rapamycin) mimicked autophagy induction by simvastatin. Inhibition of autophagy with bafilomycin A1, 3-methyladenine and LC3ß shRNA, as well as AMPK inhibition with compound C or AMPK siRNA, markedly increased apoptotic death of simvastatin-treated U251 cells. These data suggest that inhibition of AMPK-dependent autophagic response might sensitize glioma cells to statin-induced apoptotic death.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/enzimologia , Glioma/enzimologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/genética , Glioma/patologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Ratos , Transdução de Sinais/efeitos dos fármacos , Sinvastatina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Transfecção
12.
Pharm Res ; 29(8): 2249-63, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22538436

RESUMO

PURPOSE: To investigate the ability of chloroquine, a lysosomotropic autophagy inhibitor, to enhance the anticancer effect of nutrient deprivation. METHODS: Serum-deprived U251 glioma, B16 melanoma and L929 fibrosarcoma cells were treated with chloroquine in vitro. Cell viability was measured by crystal violet and MTT assay. Oxidative stress, apoptosis/necrosis and intracellular acidification were analyzed by flow cytometry. Cell morphology was examined by light and electron microscopy. Activation of AMP-activated protein kinase (AMPK) and autophagy were monitored by immunoblotting. RNA interference was used for AMPK and LC3b knockdown. The anticancer efficiency of intraperitoneal chloroquine in calorie-restricted mice was assessed using a B16 mouse melanoma model. RESULTS: Chloroquine rapidly killed serum-starved cancer cells in vitro. This effect was not mimicked by autophagy inhibitors or LC3b shRNA, indicating autophagy-independent mechanism. Chloroquine-induced lysosomal accumulation and oxidative stress, leading to mitochondrial depolarization, caspase activation and mixed apoptotic/necrotic cell death, were prevented by lysosomal acidification inhibitor bafilomycin. AMPK downregulation participated in chloroquine action, as AMPK activation reduced, and AMPK shRNA mimicked chloroquine toxicity. Chloroquine inhibited melanoma growth in calorie-restricted mice, causing lysosomal accumulation, mitochondrial disintegration and selective necrosis of tumor cells. CONCLUSION: Combined treatment with chloroquine and calorie restriction might be useful in cancer therapy.


Assuntos
Antimaláricos/uso terapêutico , Restrição Calórica , Cloroquina/uso terapêutico , Lisossomos/efeitos dos fármacos , Neoplasias/dietoterapia , Neoplasias/tratamento farmacológico , Animais , Antimaláricos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Feminino , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Melanoma/dietoterapia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos
13.
Org Biomol Chem ; 10(25): 4933-42, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22614284

RESUMO

The design, synthesis and biological evaluation of a novel C,D-spirolactone analogue of paclitaxel is described. This is the first paclitaxel analogue without an oxetane D-ring that shows a significant cytotoxic effect (activity one order of magnitude lower than paclitaxel). More importantly, its cytotoxicity is a result of a different mechanism of action, involving mTOR inhibition-dependent autophagy instead of G(2)/M cell cycle arrest-dependent apoptosis.


Assuntos
Autofagia/efeitos dos fármacos , Paclitaxel/química , Espironolactona/análogos & derivados , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Paclitaxel/farmacologia
14.
Life Sci ; 297: 120481, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304128

RESUMO

We investigated the mechanisms and the role of autophagy in the differentiation of HL-60 human acute myeloid leukemia cells induced by protein kinase C (PKC) activator phorbol myristate acetate (PMA). PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by cell-cycle arrest accompanied by elevated expression of macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by the increase in intracellular acidification, accumulation/punctuation of autophagosome marker LC3-II, and the increase in autophagic flux. PMA also increased nuclear translocation of autophagy transcription factors TFEB, FOXO1, and FOXO3, as well as the expression of several autophagy-related (ATG) genes in HL-60 cells. PMA failed to activate autophagy inducer AMP-activated protein kinase (AMPK) and inhibit autophagy suppressor mechanistic target of rapamycin complex 1 (mTORC1). On the other hand, it readily stimulated the phosphorylation of mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) via a protein kinase C-dependent mechanism. Pharmacological or genetic inhibition of ERK or JNK suppressed PMA-triggered nuclear translocation of TFEB and FOXO1/3, ATG expression, dissociation of pro-autophagic beclin-1 from its inhibitor BCL2, autophagy induction, and differentiation of HL-60 cells into macrophage-like cells. Pharmacological or genetic inhibition of autophagy also blocked PMA-induced macrophage differentiation of HL-60 cells. Therefore, MAP kinases ERK and JNK control PMA-induced macrophage differentiation of HL-60 leukemia cells through AMPK/mTORC1-independent, TFEB/FOXO-mediated transcriptional and beclin-1-dependent post-translational activation of autophagy.


Assuntos
Leucemia , Autofagia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HL-60 , Humanos , Macrófagos/metabolismo , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
15.
Cancers (Basel) ; 13(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34439299

RESUMO

Graphene-based nanomaterials (GNM) are plausible candidates for cancer therapeutics and drug delivery systems. Pure graphene and graphene oxide nanoparticles, as well as graphene quantum dots and graphene nanofibers, were all able to trigger autophagy in cancer cells through both transcriptional and post-transcriptional mechanisms involving oxidative/endoplasmic reticulum stress, AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and Toll-like receptor signaling. This was often coupled with lysosomal dysfunction and subsequent blockade of autophagic flux, which additionally increased the accumulation of autophagy mediators that participated in apoptotic, necrotic, or necroptotic death of cancer cells and influenced the immune response against the tumor. In this review, we analyze molecular mechanisms and structure-activity relationships of GNM-mediated autophagy modulation, its consequences for cancer cell survival/death and anti-tumor immune response, and the possible implications for the use of GNM in cancer therapy.

16.
Free Radic Biol Med ; 177: 167-180, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678419

RESUMO

We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.


Assuntos
Grafite , Neuroblastoma , Pontos Quânticos , Antioxidantes/farmacologia , Apoptose , Autofagia , Linhagem Celular Tumoral , Humanos , Estresse Oxidativo
17.
Data Brief ; 11: 225-230, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28243617

RESUMO

Autophagy, a catabolic process involving intracellular degradation of unnecessary or dysfunctional cellular components through the lysosomal machinery, could act as a prosurvival, as well as a cytotoxic mechanism (Parzych and Klionsky, 2014) [1]. Cyclooxygenase inhibitor indomethacin inhibits proliferation of glioma cells, and has been reported to reduce the activity of the main autophagy repressor mammalian target of rapamycin (mTOR) (Pantovic et al., 2016) [2]. Here we investigated the ability of indomethacin to induce autophagy in U251 human glioma cells. We assessed the influence of indomethacin on intracellular acidification, expression of proautophagic protein beclin-1, and conversion of microtubule-associated protein light chain 3-I (LC3-I) to autophagosome-associated LC3-II, in the presence or absence of lysosomal inhibitors. The effect of genetic and pharmacological downregulation of autophagy on the cytotoxicity of indomethacin was also evaluated. The interpretation of these data can be found in "In vitro antiglioma action of indomethacin is mediated via AMP-activated protein kinase/mTOR complex 1 signaling pathway" (Pantovic et al., 2016; doi:10.1016/j.biocel.2016.12.007) [2].

18.
Int J Biochem Cell Biol ; 83: 84-96, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27988363

RESUMO

We investigated the role of the intracellular energy-sensing AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the in vitro antiglioma effect of the cyclooxygenase (COX) inhibitor indomethacin. Indomethacin was more potent than COX inhibitors diclofenac, naproxen, and ketoprofen in reducing the viability of U251 human glioma cells. Antiglioma effect of the drug was associated with p21 increase and G2M cell cycle arrest, as well as with oxidative stress, mitochondrial depolarization, caspase activation, and the induction of apoptosis. Indomethacin increased the phosphorylation of AMPK and its targets Raptor and acetyl-CoA carboxylase (ACC), and reduced the phosphorylation of mTOR and mTOR complex 1 (mTORC1) substrates p70S6 kinase and PRAS40 (Ser183). AMPK knockdown by RNA interference, as well as the treatment with the mTORC1 activator leucine, prevented indomethacin-mediated mTORC1 inhibition and cytotoxic action, while AMPK activators metformin and AICAR mimicked the effects of the drug. AMPK activation by indomethacin correlated with intracellular ATP depletion and increase in AMP/ATP ratio, and was apparently independent of COX inhibition or the increase in intracellular calcium. Finally, the toxicity of indomethacin towards primary human glioma cells was associated with the activation of AMPK/Raptor/ACC and subsequent suppression of mTORC1/S6K. By demonstrating the involvement of AMPK/mTORC1 pathway in the antiglioma action of indomethacin, our results support its further exploration in glioma therapy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Indometacina/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioma/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Modelos Biológicos , Complexos Multiproteicos/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
19.
Biomaterials ; 35(15): 4428-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24612819

RESUMO

Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Grafite/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Pontos Quânticos/química , Animais , Antibacterianos/química , Células Cultivadas , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Grafite/química , Humanos , Luz , Staphylococcus aureus Resistente à Meticilina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/tratamento farmacológico
20.
PLoS One ; 9(4): e94374, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714637

RESUMO

The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3ß or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Citarabina/farmacologia , Leucemia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia/tratamento farmacológico , Leucemia/genética , Leucócitos Mononucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA