Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(34): e2408313121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39150781

RESUMO

RNA's diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.


Assuntos
Temperatura Baixa , Conformação de Ácido Nucleico , Transição de Fase , RNA , RNA/química , Dobramento de RNA , Pareamento de Bases , Estabilidade de RNA , Termodinâmica , Água/química
2.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022230

RESUMO

Accurate knowledge of RNA hybridization is essential for understanding RNA structure and function. Here we mechanically unzip and rezip a 2-kbp RNA hairpin and derive the 10 nearest-neighbor base pair (NNBP) RNA free energies in sodium and magnesium with 0.1 kcal/mol precision using optical tweezers. Notably, force-distance curves (FDCs) exhibit strong irreversible effects with hysteresis and several intermediates, precluding the extraction of the NNBP energies with currently available methods. The combination of a suitable RNA synthesis with a tailored pulling protocol allowed us to obtain the fully reversible FDCs necessary to derive the NNBP energies. We demonstrate the equivalence of sodium and magnesium free-energy salt corrections at the level of individual NNBP. To characterize the irreversibility of the unzipping-rezipping process, we introduce a barrier energy landscape of the stem-loop structures forming along the complementary strands, which compete against the formation of the native hairpin. This landscape correlates with the hysteresis observed along the FDCs. RNA sequence analysis shows that base stacking and base pairing stabilize the stem-loops that kinetically trap the long-lived intermediates observed in the FDC. Stem-loops formation appears as a general mechanism to explain a wide range of behaviors observed in RNA folding.


Assuntos
Conformação de Ácido Nucleico , Dobramento de RNA , Fenômenos Biomecânicos , Magnésio/química , RNA/química , Sódio/química , Termodinâmica
3.
Proc Natl Acad Sci U S A ; 119(11): e2112382119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271392

RESUMO

SignificanceUnderstanding the molecular forces driving the unfolded polypeptide chain to self-assemble into a functional native structure remains an open question. However, identifying the states visited during protein folding (e.g., the transition state between the unfolded and native states) is tricky due to their transient nature. Here, we introduce calorimetric force spectroscopy in a temperature jump optical trap to determine the enthalpy, entropy, and heat capacity of the transition state of protein barnase. We find that the transition state has the properties of a dry molten globule, that is, high free energy and low configurational entropy, being structurally similar to the native state. This experimental single-molecule study characterizes the thermodynamic properties of the transition state in funneled energy landscapes.


Assuntos
Proteínas de Bactérias , Pinças Ópticas , Dobramento de Proteína , Ribonucleases , Imagem Individual de Molécula , Proteínas de Bactérias/química , Calorimetria/métodos , Conformação Proteica , Desnaturação Proteica , Ribonucleases/química , Imagem Individual de Molécula/métodos , Termodinâmica
4.
Biophys J ; 123(7): 770-781, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38268191

RESUMO

Red blood cells (RBCs) are the simplest cell types with complex dynamical and viscoelastic phenomenology. While the mechanical rigidity and the flickering noise of RBCs have been extensively investigated, an accurate determination of the constitutive equations of the relaxational kinetics is lacking. Here we measure the force relaxation of RBCs under different types of tensional and compressive extension-jump protocols by attaching an optically trapped bead to the RBC membrane. Relaxational kinetics follows linear response from 60 pN (tensional) to -20 pN (compressive) applied forces, exhibiting a triple exponential function with three well-separated timescales over four decades (0.01-100 s). While the fast timescale (τF∼0.02(1)s) corresponds to the relaxation of the membrane, the intermediate and slow timescales (τI=4(1)s; τS=70(8)s) likely arise from the cortex dynamics and the cytosol viscosity. Relaxation is highly heterogeneous across the RBC population, yet the three relaxation times are correlated, showing dynamical scaling. Finally, we find that glucose depletion and laser illumination of RBCs lead to faster triple exponential kinetics and RBC rigidification. Viscoelastic phenotyping is a promising dynamical biomarker applicable to other cell types and active systems.


Assuntos
Viscosidade Sanguínea , Eritrócitos , Eritrócitos/fisiologia , Viscosidade , Cinética , Luz
5.
Phys Rev Lett ; 130(20): 208401, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267556

RESUMO

The experimental measurement of correlation functions and critical exponents in disordered systems is key to testing renormalization group (RG) predictions. We mechanically unzip single DNA hairpins with optical tweezers, an experimental realization of the diffusive motion of a particle in a one-dimensional random force field, known as the Sinai model. We measure the unzipping forces F_{w} as a function of the trap position w in equilibrium and calculate the force-force correlator Δ_{m}(w), its amplitude, and correlation length, finding agreement with theoretical predictions. We study the universal scaling properties since the effective trap stiffness m^{2} decreases upon unzipping. Fluctuations of the position of the base pair at the unzipping junction u scales as u∼m^{-ζ}, with a roughness exponent ζ=1.34±0.06, in agreement with the analytical prediction ζ=4/3. Our study provides a single-molecule test of the functional RG approach for disordered elastic systems in equilibrium.


Assuntos
DNA , Pinças Ópticas , Conformação de Ácido Nucleico , DNA/genética , Pareamento de Bases , Fenômenos Mecânicos
6.
Entropy (Basel) ; 25(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36832687

RESUMO

Maxwell's demon is a famous thought experiment and a paradigm of the thermodynamics of information. It is related to Szilard's engine, a two-state information-to-work conversion device in which the demon performs single measurements and extracts work depending on the state measurement outcome. A variant of these models, the continuous Maxwell demon (CMD), was recently introduced by Ribezzi-Crivellari and Ritort where work was extracted after multiple repeated measurements every time that τ is in a two-state system. The CMD was able to extract unbounded amounts of work at the cost of an unbounded amount of information storage. In this work, we built a generalization of the CMD to the N-state case. We obtained generalized analytical expressions for the average work extracted and the information content. We show that the second law inequality for information-to-work conversion is fulfilled. We illustrate the results for N-states with uniform transition rates and for the N = 3 case.

7.
Biophys J ; 121(16): 3010-3022, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35864738

RESUMO

Determining the non-specific and specific electrostatic contributions of magnesium binding to RNA is a challenging problem. We introduce a single-molecule method based on measuring the folding energy of a native RNA in magnesium and at its equivalent sodium concentration. The latter is defined so that the folding energy in sodium equals the non-specific electrostatic contribution in magnesium. The sodium equivalent can be estimated according to the empirical 100/1 rule (1 M NaCl is equivalent to 10 mM MgCl2), which is a good approximation for most RNAs. The method is applied to an RNA three-way junction (3WJ) that contains specific Mg2+ binding sites and misfolds into a double hairpin structure without binding sites. We mechanically pull the RNA with optical tweezers and use fluctuation theorems to determine the folding energies of the native and misfolded structures in magnesium (10 mM MgCl2) and at the equivalent sodium condition (1 M NaCl). While the free energies of the misfolded structure are equal in magnesium and sodium, they are not for the native structure, the difference being due to the specific binding energy of magnesium to the 3WJ, which equals ΔG≃ 10 kcal/mol. Besides stabilizing the 3WJ, Mg2+ also kinetically rescues it from the misfolded structure over timescales of tens of seconds in a force-dependent manner. The method should generally be applicable to determine the specific binding energies of divalent cations to other tertiary RNAs.


Assuntos
Magnésio , RNA , Magnésio/metabolismo , Conformação de Ácido Nucleico , RNA/química , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Termodinâmica
8.
Entropy (Basel) ; 24(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35885118

RESUMO

Nonequilibrium work relations and fluctuation theorems permit us to extract equilibrium information from nonequilibrium measurements. They find application in single-molecule pulling experiments where molecular free energies can be determined from irreversible work measurements by using unidirectional (e.g., Jarzynski's equality) and bidirectional (e.g., Crooks fluctuation theorem and Bennet's acceptance ratio (BAR)) methods. However, irreversibility and the finite number of pulls limit their applicability: the higher the dissipation, the larger the number of pulls necessary to estimate ΔG within a few kBT. Here, we revisit pulling experiments on an RNA three-way junction (3WJ) that exhibits significant dissipation and work-distribution long tails upon mechanical unfolding. While bidirectional methods are more predictive, unidirectional methods are strongly biased. We also consider a cyclic protocol that combines the forward and reverse work values to increase the statistics of the measurements. For a fixed total experimental time, faster pulling rates permit us to efficiently sample rare events and reduce the bias, compensating for the increased dissipation. This analysis provides a more stringent test of the fluctuation theorem in the large irreversibility regime.

9.
Phys Chem Chem Phys ; 23(26): 14151-14155, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34180930

RESUMO

We use mechanical unfolding of single DNA hairpins with modified bases to accurately assess intra- and intermolecular forces in nucleic acids. As expected, the modification stabilizes the hybridized hairpin, but we also observe intriguing stacking interactions in the unfolded hairpin. Our study highlights the benefit of using base-modified nucleic acids in force-spectroscopy.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Fenômenos Mecânicos , Modelos Moleculares , Conformação de Ácido Nucleico , Imagem Individual de Molécula , Termodinâmica , Temperatura de Transição
10.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947069

RESUMO

The accurate knowledge of the elastic properties of single-stranded DNA (ssDNA) is key to characterize the thermodynamics of molecular reactions that are studied by force spectroscopy methods where DNA is mechanically unfolded. Examples range from DNA hybridization, DNA ligand binding, DNA unwinding by helicases, etc. To date, ssDNA elasticity has been studied with different methods in molecules of varying sequence and contour length. A dispersion of results has been reported and the value of the persistence length has been found to be larger for shorter ssDNA molecules. We carried out pulling experiments with optical tweezers to characterize the elastic response of ssDNA over three orders of magnitude in length (60-14 k bases). By fitting the force-extension curves (FECs) to the Worm-Like Chain model we confirmed the above trend:the persistence length nearly doubles for the shortest molecule (60 b) with respect to the longest one (14 kb). We demonstrate that the observed trend is due to the different force regimes fitted for long and short molecules, which translates into two distinct elastic regimes at low and high forces. We interpret this behavior in terms of a force-induced sugar pucker conformational transition (C3'-endo to C2'-endo) upon pulling ssDNA.


Assuntos
DNA de Cadeia Simples/química , Desoxirribose/química , Conformação de Ácido Nucleico , DNA de Cadeia Simples/ultraestrutura , Elasticidade , Pinças Ópticas , Estresse Mecânico , Termodinâmica
11.
Nucleic Acids Res ; 45(22): 12921-12931, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29177444

RESUMO

DNA hybridization is an essential molecular reaction in biology with many applications. The nearest-neighbor (NN) model for nucleic acids predicts DNA thermodynamics using energy values for the different base pair motifs. These values have been derived from melting experiments in monovalent and divalent salt and applied to predict melting temperatures of oligos within a few degrees. However, an improved determination of the NN energy values and their salt dependencies in magnesium is still needed for current biotechnological applications seeking high selectivity in the hybridization of synthetic DNAs. We developed a methodology based on single molecule unzipping experiments to derive accurate NN energy values and initiation factors for DNA. A new set of values in magnesium is derived, which reproduces unzipping data and improves melting temperature predictions for all available oligo lengths, in a range of temperature and salt conditions where correlation effects between the magnesium bound ions are weak. The NN salt correction parameters are shown to correlate to the GC content of the NN motifs. Our study shows the power of single-molecule force spectroscopy assays to unravel novel features of nucleic acids such as sequence-dependent salt corrections.


Assuntos
DNA/química , Magnésio/química , Termodinâmica , Temperatura de Transição , Algoritmos , Composição de Bases , Pareamento de Bases , DNA/genética , DNA/metabolismo , Cinética , Magnésio/metabolismo , Modelos Químicos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico/métodos , Sódio/química , Sódio/metabolismo
12.
Nucleic Acids Res ; 43(5): 2767-79, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25690887

RESUMO

DNA bis-intercalators are widely used in molecular biology with applications ranging from DNA imaging to anticancer pharmacology. Two fundamental aspects of these ligands are the lifetime of the bis-intercalated complexes and their sequence selectivity. Here, we perform single-molecule optical tweezers experiments with the peptide Thiocoraline showing, for the first time, that bis-intercalation is driven by a very slow off-rate that steeply decreases with applied force. This feature reveals the existence of a long-lived (minutes) mono-intercalated intermediate that contributes to the extremely long lifetime of the complex (hours). We further exploit this particularly slow kinetics to determine the thermodynamics of binding and persistence length of bis-intercalated DNA for a given fraction of bound ligand, a measurement inaccessible in previous studies of faster intercalating agents. We also develop a novel single-molecule footprinting technique based on DNA unzipping and determine the preferred binding sites of Thiocoraline with one base-pair resolution. This fast and radiolabelling-free footprinting technique provides direct access to the binding sites of small ligands to nucleic acids without the need of cleavage agents. Overall, our results provide new insights into the binding pathway of bis-intercalators and the reported selectivity might be of relevance for this and other anticancer drugs interfering with DNA replication and transcription in carcinogenic cell lines.


Assuntos
Pegada de DNA/métodos , DNA/metabolismo , Depsipeptídeos/metabolismo , Substâncias Intercalantes/metabolismo , Algoritmos , DNA/química , DNA/genética , Depsipeptídeos/química , Elasticidade , Substâncias Intercalantes/química , Cinética , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , Pinças Ópticas , Ligação Proteica , Termodinâmica , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 111(33): E3386-94, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25099353

RESUMO

Fluctuation relations (FRs) are among the few existing general results in nonequilibrium systems. Their verification requires the measurement of the total work performed on a system. Nevertheless in many cases only a partial measurement of the work is possible. Here we consider FRs in dual-trap optical tweezers where two different forces (one per trap) are measured. With this setup we perform pulling experiments on single molecules by moving one trap relative to the other. We demonstrate that work should be measured using the force exerted by the trap that is moved. The force that is measured in the trap at rest fails to provide the full dissipation in the system, leading to a (incorrect) work definition that does not satisfy the FR. The implications to single-molecule experiments and free-energy measurements are discussed. In the case of symmetric setups a second work definition, based on differential force measurements, is introduced. This definition is best suited to measure free energies as it shows faster convergence of estimators. We discuss measurements using the (incorrect) work definition as an example of partial work measurement. We show how to infer the full work distribution from the partial one via the FR. The inference process does also yield quantitative information, e.g., the hydrodynamic drag on the dumbbell. Results are also obtained for asymmetric dual-trap setups. We suggest that this kind of inference could represent a previously unidentified and general application of FRs to extract information about irreversible processes in small systems.

14.
Biophys J ; 110(1): 63-74, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26745410

RESUMO

The unfolding and folding of protein barnase has been extensively investigated in bulk conditions under the effect of denaturant and temperature. These experiments provided information about structural and kinetic features of both the native and the unfolded states of the protein, and debates about the possible existence of an intermediate state in the folding pathway have arisen. Here, we investigate the folding/unfolding reaction of protein barnase under the action of mechanical force at the single-molecule level using optical tweezers. We measure unfolding and folding force-dependent kinetic rates from pulling and passive experiments, respectively, and using Kramers-based theories (e.g., Bell-Evans and Dudko-Hummer-Szabo models), we extract the position of the transition state and the height of the kinetic barrier mediating unfolding and folding transitions, finding good agreement with previous bulk measurements. Measurements of the force-dependent kinetic barrier using the continuous effective barrier analysis show that protein barnase verifies the Leffler-Hammond postulate under applied force and allow us to extract its free energy of folding, ΔG0. The estimated value of ΔG0 is in agreement with our predictions obtained using fluctuation relations and previous bulk studies. To address the possible existence of an intermediate state on the folding pathway, we measure the power spectrum of force fluctuations at high temporal resolution (50 kHz) when the protein is either folded or unfolded and, additionally, we study the folding transition-path time at different forces. The finite bandwidth of our experimental setup sets the lifetime of potential intermediate states upon barnase folding/unfolding in the submillisecond timescale.


Assuntos
Fenômenos Mecânicos , Desdobramento de Proteína , Ribonucleases/química , Proteínas de Bactérias , Fenômenos Biomecânicos , Elasticidade , Cinética , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Termodinâmica
15.
Nucleic Acids Res ; 42(3): 2064-74, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24225314

RESUMO

Single-stranded DNA (ssDNA) plays a major role in several biological processes. It is therefore of fundamental interest to understand how the elastic response and the formation of secondary structures are modulated by the interplay between base pairing and electrostatic interactions. Here we measure force-extension curves (FECs) of ssDNA molecules in optical tweezers set up over two orders of magnitude of monovalent and divalent salt conditions, and obtain its elastic parameters by fitting the FECs to semiflexible models of polymers. For both monovalent and divalent salts, we find that the electrostatic contribution to the persistence length is proportional to the Debye screening length, varying as the inverse of the square root of cation concentration. The intrinsic persistence length is equal to 0.7 nm for both types of salts, and the effectivity of divalent cations in screening electrostatic interactions appears to be 100-fold as compared with monovalent salt, in line with what has been recently reported for single-stranded RNA. Finally, we propose an analysis of the FECs using a model that accounts for the effective thickness of the filament at low salt condition and a simple phenomenological description that quantifies the formation of non-specific secondary structure at low forces.


Assuntos
DNA de Cadeia Simples/química , Pareamento de Bases , Cátions Bivalentes/química , Cátions Monovalentes/química , Elasticidade , Cloreto de Magnésio/química , Cloreto de Sódio/química , Eletricidade Estática
16.
Biophys J ; 108(12): 2854-64, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26083925

RESUMO

To our knowledge, we have developed a novel temperature-jump optical tweezers setup that changes the temperature locally and rapidly. It uses a heating laser with a wavelength that is highly absorbed by water so it can cover a broad range of temperatures. This instrument can record several force-distance curves for one individual molecule at various temperatures with good thermal and mechanical stability. Our design has features to reduce convection and baseline shifts, which have troubled previous heating-laser instruments. As proof of accuracy, we used the instrument to carry out DNA unzipping experiments in which we derived the average basepair free energy, entropy, and enthalpy of formation of the DNA duplex in a range of temperatures between 5°C and 50°C. We also used the instrument to characterize the temperature-dependent elasticity of single-stranded DNA (ssDNA), where we find a significant condensation plateau at low force and low temperature. Oddly, the persistence length of ssDNA measured at high force seems to increase with temperature, contrary to simple entropic models.


Assuntos
DNA de Cadeia Simples/química , Temperatura Alta , Imagem Óptica/instrumentação , Pinças Ópticas , Pareamento de Bases , Elasticidade , Imagem Óptica/métodos
17.
Opt Lett ; 40(5): 800-3, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25723436

RESUMO

Optical tweezers (OTs) allow the measurement of fluctuations at the nanoscale, in particular fluctuations in the end-to-end distance in single molecules. Fluctuation spectra can yield valuable information, but they can easily be contaminated by instrumental effects. We identify axial fluctuations, i.e., fluctuations of the trapped beads in the direction of light propagation, as one of these instrumental effects. Remarkably, axial fluctuations occur on a characteristic timescale similar to that of conformational (folding) transitions, which may lead to misinterpretation of the experimental results. We show that a precise measurement of the effect of force on both axial and conformational fluctuations is crucial to disentangle them. Our results on axial fluctuations are captured by a simple and general formula valid for all OT setups and provide experimentalists with a general strategy to distinguish axial fluctuations from conformational transitions.


Assuntos
Pinças Ópticas , Biopolímeros/química , Elasticidade , Conformação Molecular
18.
Biopolymers ; 101(12): 1193-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25091120

RESUMO

The characterization of elastic properties of biopolymers is crucial to understand many molecular reactions determined by conformational bending fluctuations of the polymer. Direct measurement of such elastic properties using single-molecule methods is usually hindered by the intrinsic tendency of such biopolymers to form high-order molecular structures. For example, single-stranded deoxyribonucleic acids (ssDNA) tend to form secondary structures such as local double helices that prevent the direct measurement of the ideal elastic response of the ssDNA. In this work, we show how to extract the ideal elastic response in the entropic regime of short ssDNA molecules by mechanically pulling two-state DNA hairpins of different contour lengths. This is achieved by measuring the force dependence of the molecular extension and stiffness on mechanically folding and unfolding the DNA hairpin. Both quantities are fit to the worm-like chain elastic model giving values for the persistence length and the interphosphate distance. This method can be used to unravel the elastic properties of short ssDNA and RNA sequences and, more generally, any biopolymer that can exhibit a cooperative two-state transition between mechanically folded and unfolded states (such as proteins).


Assuntos
DNA de Cadeia Simples/química , Elasticidade , Conformação de Ácido Nucleico , Fenômenos Biomecânicos , Análise Espectral
19.
Nano Lett ; 13(11): 5197-202, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24074342

RESUMO

Force-spectroscopy experiments make it possible to characterize single ligand-receptor pairs. Here we measure the spectrum of bond strengths and flexibilities in antibody-antigen interactions using optical tweezers. We characterize the mechanical evolution of polyclonal antibodies generated under infection and the ability of a monoclonal antibody to cross-react against different antigens. Our results suggest that bond flexibility plays a major role in remodeling antibody-antigen bonds in order to improve recognition during the maturation of the humoral immune system.


Assuntos
Reações Antígeno-Anticorpo , Anticorpos Monoclonais/imunologia , Pinças Ópticas , Análise Espectral/métodos
20.
Proc Natl Acad Sci U S A ; 107(35): 15431-6, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20716688

RESUMO

Accurate knowledge of the thermodynamic properties of nucleic acids is crucial to predicting their structure and stability. To date most measurements of base-pair free energies in DNA are obtained in thermal denaturation experiments, which depend on several assumptions. Here we report measurements of the DNA base-pair free energies based on a simplified system, the mechanical unzipping of single DNA molecules. By combining experimental data with a physical model and an optimization algorithm for analysis, we measure the 10 unique nearest-neighbor base-pair free energies with 0.1 kcal mol(-1) precision over two orders of magnitude of monovalent salt concentration. We find an improved set of standard energy values compared with Unified Oligonucleotide energies and a unique set of 10 base-pair-specific salt-correction values. The latter are found to be strongest for AA/TT and weakest for CC/GG. Our unique energy values and salt corrections improve predictions of DNA unzipping forces and are fully compatible with melting temperatures for oligos. The method should make it possible to obtain free energies, enthalpies, and entropies in conditions not accessible by bulk methodologies.


Assuntos
Pareamento de Bases , DNA/química , Termodinâmica , Algoritmos , Sequência de Bases , DNA de Cadeia Simples/química , Entropia , Modelos Químicos , Método de Monte Carlo , Conformação de Ácido Nucleico/efeitos dos fármacos , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA