Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(2): 343-348, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284749

RESUMO

Our ability to unambiguously image and track individual molecules in live cells is limited by packing of multiple copies of labeled molecules within the resolution limit. Here we devise a universal genetic strategy to precisely control copy number of fluorescently labeled molecules in a cell. This system has a dynamic range of ∼10,000-fold, enabling sparse labeling of proteins expressed at different abundance levels. Combined with photostable labels, this system extends the duration of automated single-molecule tracking by two orders of magnitude. We demonstrate long-term imaging of synaptic vesicle dynamics in cultured neurons as well as in intact zebrafish. We found axon initial segment utilizes a "waterfall" mechanism gating synaptic vesicle transport polarity by promoting anterograde transport processivity. Long-time observation also reveals that transcription factor hops between clustered binding sites in spatially restricted subnuclear regions, suggesting that topological structures in the nucleus shape local gene activities by a sequestering mechanism. This strategy thus greatly expands the spatiotemporal length scales of live-cell single-molecule measurements, enabling new experiments to quantitatively understand complex control of molecular dynamics in vivo.


Assuntos
Rastreamento de Células/métodos , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Cinética , Neurônios/citologia , Imagem com Lapso de Tempo/métodos , Peixe-Zebra
2.
Nature ; 500(7461): 175-81, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23925240

RESUMO

Animal behaviour arises from computations in neuronal circuits, but our understanding of these computations has been frustrated by the lack of detailed synaptic connection maps, or connectomes. For example, despite intensive investigations over half a century, the neuronal implementation of local motion detection in the insect visual system remains elusive. Here we develop a semi-automated pipeline using electron microscopy to reconstruct a connectome, containing 379 neurons and 8,637 chemical synaptic contacts, within the Drosophila optic medulla. By matching reconstructed neurons to examples from light microscopy, we assigned neurons to cell types and assembled a connectome of the repeating module of the medulla. Within this module, we identified cell types constituting a motion detection circuit, and showed that the connections onto individual motion-sensitive neurons in this circuit were consistent with their direction selectivity. Our results identify cellular targets for future functional investigations, and demonstrate that connectomes can provide key insights into neuronal computations.


Assuntos
Conectoma , Drosophila/fisiologia , Modelos Biológicos , Percepção de Movimento/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Vias Visuais/citologia
3.
Proc Natl Acad Sci U S A ; 112(44): 13711-6, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483464

RESUMO

We reconstructed the synaptic circuits of seven columns in the second neuropil or medulla behind the fly's compound eye. These neurons embody some of the most stereotyped circuits in one of the most miniaturized of animal brains. The reconstructions allow us, for the first time to our knowledge, to study variations between circuits in the medulla's neighboring columns. This variation in the number of synapses and the types of their synaptic partners has previously been little addressed because methods that visualize multiple circuits have not resolved detailed connections, and existing connectomic studies, which can see such connections, have not so far examined multiple reconstructions of the same circuit. Here, we address the omission by comparing the circuits common to all seven columns to assess variation in their connection strengths and the resultant rates of several different and distinct types of connection error. Error rates reveal that, overall, <1% of contacts are not part of a consensus circuit, and we classify those contacts that supplement (E+) or are missing from it (E-). Autapses, in which the same cell is both presynaptic and postsynaptic at the same synapse, are occasionally seen; two cells in particular, Dm9 and Mi1, form ≥ 20-fold more autapses than do other neurons. These results delimit the accuracy of developmental events that establish and normally maintain synaptic circuits with such precision, and thereby address the operation of such circuits. They also establish a precedent for error rates that will be required in the new science of connectomics.


Assuntos
Drosophila melanogaster/fisiologia , Sinapses/fisiologia , Visão Ocular/fisiologia , Animais
4.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38659887

RESUMO

Vision provides animals with detailed information about their surroundings, conveying diverse features such as color, form, and movement across the visual scene. Computing these parallel spatial features requires a large and diverse network of neurons, such that in animals as distant as flies and humans, visual regions comprise half the brain's volume. These visual brain regions often reveal remarkable structure-function relationships, with neurons organized along spatial maps with shapes that directly relate to their roles in visual processing. To unravel the stunning diversity of a complex visual system, a careful mapping of the neural architecture matched to tools for targeted exploration of that circuitry is essential. Here, we report a new connectome of the right optic lobe from a male Drosophila central nervous system FIB-SEM volume and a comprehensive inventory of the fly's visual neurons. We developed a computational framework to quantify the anatomy of visual neurons, establishing a basis for interpreting how their shapes relate to spatial vision. By integrating this analysis with connectivity information, neurotransmitter identity, and expert curation, we classified the ~53,000 neurons into 727 types, about half of which are systematically described and named for the first time. Finally, we share an extensive collection of split-GAL4 lines matched to our neuron type catalog. Together, this comprehensive set of tools and data unlock new possibilities for systematic investigations of vision in Drosophila, a foundation for a deeper understanding of sensory processing.

5.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961670

RESUMO

The immense scale and complexity of neuronal electron microscopy (EM) datasets pose significant challenges in data processing, validation, and interpretation, necessitating the development of efficient, automated, and scalable error-detection methodologies. This paper proposes a novel approach that employs mesh processing techniques to identify potential error locations near neuronal tips. Error detection at tips is a particularly important challenge since these errors usually indicate that many synapses are falsely split from their parent neuron, injuring the integrity of the connectomic reconstruction. Additionally, we draw implications and results from an implementation of this error detection in a semi-automated proofreading pipeline. Manual proofreading is a laborious, costly, and currently necessary method for identifying the errors in the machine learning based segmentation of neural tissue. This approach streamlines the process of proofreading by systematically highlighting areas likely to contain inaccuracies and guiding proofreaders towards potential continuations, accelerating the rate at which errors are corrected.

6.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36993282

RESUMO

We are now in the era of millimeter-scale electron microscopy (EM) volumes collected at nanometer resolution (Shapson-Coe et al., 2021; Consortium et al., 2021). Dense reconstruction of cellular compartments in these EM volumes has been enabled by recent advances in Machine Learning (ML) (Lee et al., 2017; Wu et al., 2021; Lu et al., 2021; Macrina et al., 2021). Automated segmentation methods can now yield exceptionally accurate reconstructions of cells, but despite this accuracy, laborious post-hoc proofreading is still required to generate large connectomes free of merge and split errors. The elaborate 3-D meshes of neurons produced by these segmentations contain detailed morphological information, from the diameter, shape, and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting information about these features can require substantial effort to piece together existing tools into custom workflows. Building on existing open-source software for mesh manipulation, here we present "NEURD", a software package that decomposes each meshed neuron into a compact and extensively-annotated graph representation. With these feature-rich graphs, we implement workflows for state of the art automated post-hoc proofreading of merge errors, cell classification, spine detection, axon-dendritic proximities, and other features that can enable many downstream analyses of neural morphology and connectivity. NEURD can make these new massive and complex datasets more accessible to neuroscience researchers focused on a variety of scientific questions.

7.
Sci Rep ; 12(1): 3210, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217679

RESUMO

Insect neural systems are a promising source of inspiration for new navigation algorithms, especially on low size, weight, and power platforms. There have been unprecedented recent neuroscience breakthroughs with Drosophila in behavioral and neural imaging experiments as well as the mapping of detailed connectivity of neural structures. General mechanisms for learning orientation in the central complex (CX) of Drosophila have been investigated previously; however, it is unclear how these underlying mechanisms extend to cases where there is translation through an environment (beyond only rotation), which is critical for navigation in robotic systems. Here, we develop a CX neural connectivity-constrained model that performs sensor fusion, as well as unsupervised learning of visual features for path integration; we demonstrate the viability of this circuit for use in robotic systems in simulated and physical environments. Furthermore, we propose a theoretical understanding of how distributed online unsupervised network weight modification can be leveraged for learning in a trajectory through an environment by minimizing orientation estimation error. Overall, our results may enable a new class of CX-derived low power robotic navigation algorithms and lead to testable predictions to inform future neuroscience experiments.


Assuntos
Educação a Distância , Algoritmos , Animais , Drosophila , Insetos , Sistema Nervoso
8.
Front Neural Circuits ; 16: 917251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589862

RESUMO

Deriving the detailed synaptic connections of an entire nervous system is the unrealized goal of the nascent field of connectomics. For the fruit fly Drosophila, in particular, we need to dissect the brain, connectives, and ventral nerve cord as a single continuous unit, fix and stain it, and undertake automated segmentation of neuron membranes. To achieve this, we designed a protocol using progressive lowering of temperature dehydration (PLT), a technique routinely used to preserve cellular structure and antigenicity. We combined PLT with low temperature en bloc staining (LTS) and recover fixed neurons as round profiles with darkly stained synapses, suitable for machine segmentation and automatic synapse detection. Here we report three different PLT-LTS methods designed to meet the requirements for FIB-SEM imaging of the Drosophila brain. These requirements include: good preservation of ultrastructural detail, high level of en bloc staining, artifact-free microdissection, and smooth hot-knife cutting to reduce the brain to dimensions suited to FIB-SEM. In addition to PLT-LTS, we designed a jig to microdissect and pre-fix the fly's delicate brain and central nervous system. Collectively these methods optimize morphological preservation, allow us to image the brain usually at 8 nm per voxel, and simultaneously speed the formerly slow rate of FIB-SEM imaging.


Assuntos
Conectoma , Drosophila , Animais , Drosophila/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Volume , Sinapses/fisiologia , Encéfalo/fisiologia
9.
J Exp Biol ; 214(Pt 17): 2864-70, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21832129

RESUMO

The role of sound in Drosophila melanogaster courtship, along with its perception via the antennae, is well established, as is the ability of this fly to learn in classical conditioning protocols. Here, we demonstrate that a neutral acoustic stimulus paired with a sucrose reward can be used to condition the proboscis-extension reflex, part of normal feeding behavior. This appetitive conditioning produces results comparable to those obtained with chemical stimuli in aversive conditioning protocols. We applied a logistic model with general estimating equations to predict the dynamics of learning, which successfully predicts the outcome of training and provides a quantitative estimate of the rate of learning. Use of acoustic stimuli with appetitive conditioning provides both an alternative to models most commonly used in studies of learning and memory in Drosophila and a means of testing hearing in both sexes, independently of courtship responsiveness.


Assuntos
Estimulação Acústica , Condicionamento Clássico , Drosophila melanogaster/fisiologia , Comportamento Alimentar , Estimulação Acústica/métodos , Animais , Comportamento Apetitivo , Feminino , Masculino , Modelos Biológicos
10.
J Neurogenet ; 24(4): 234-45, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20919857

RESUMO

Despite the growing research investigating the sex-specific organization of courtship behavior in Drosophila melanogaster, much remains to be understood about the sex-specific organization of the motor circuit that drives this behavior. To investigate the sex-specification of a tightly patterned component of courtship behavior, courtship song, the authors used the GAL4/UAS targeted gene expression system to feminize the ventral ganglia in male Drosophila and analyzed the acoustic properties of courtship song. More specifically, the authors used the thoracic-specifying teashirt promoter (tsh(GAL4)) to express feminizing transgenes specifically in the ventral ganglia. When tsh(GAL4) drove expression of transformer (tra), males were unable to produce prolonged wing extensions. Transgenic expression of an RNAi construct directed against male-specific fruitless (fru(M)) transcripts resulted in normal wing extension, but highly defective courtship song, with 58% of males failing to generate detectable courtship song. Of those that did sing, widths of individual pulses were significantly broader than controls, suggesting thoracic fru(M) function serves to mediate proprioceptive-dependent wing vibration damping during pulse song. However, the most critical signal in the song, the interpulse interval, remained intact. The inability to phenocopy this effect by reducing fru(M) expression in motor neurons and proprioceptive neurons suggests thoracic interneurons require fru(M) for proper pulse song execution and patterning of pulse structure, but not for pulse timing. This provides evidence that genes establishing sex-specific activation of complex behaviors may also be used in establishing pattern-generating motor networks underlying these sex-specific behaviors.


Assuntos
Corte , Proteínas de Drosophila/metabolismo , Feminização/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Nervos Torácicos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Feminização/metabolismo , Gânglios dos Invertebrados/metabolismo , Expressão Gênica , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Fatores de Transcrição/genética , Transgenes , Asas de Animais/metabolismo
11.
Elife ; 82019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30624205

RESUMO

Understanding the circuit mechanisms behind motion detection is a long-standing question in visual neuroscience. In Drosophila melanogaster, recently discovered synapse-level connectomes in the optic lobe, particularly in ON-pathway (T4) receptive-field circuits, in concert with physiological studies, suggest a motion model that is increasingly intricate when compared with the ubiquitous Hassenstein-Reichardt model. By contrast, our knowledge of OFF-pathway (T5) has been incomplete. Here, we present a conclusive and comprehensive connectome that, for the first time, integrates detailed connectivity information for inputs to both the T4 and T5 pathways in a single EM dataset covering the entire optic lobe. With novel reconstruction methods using automated synapse prediction suited to such a large connectome, we successfully corroborate previous findings in the T4 pathway and comprehensively identify inputs and receptive fields for T5. Although the two pathways are probably evolutionarily linked and exhibit many similarities, we uncover interesting differences and interactions that may underlie their distinct functional properties.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Percepção de Movimento , Lobo Óptico de Animais não Mamíferos/fisiologia , Animais , Conectoma , Cruzamentos Genéticos , Dendritos/metabolismo , Feminino , Homozigoto , Modelos Neurológicos , Neurônios/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Sinapses/fisiologia
12.
BMC Dev Biol ; 8: 114, 2008 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19063748

RESUMO

BACKGROUND: In both vertebrates and invertebrates, the oviduct is an epithelial tube surrounded by visceral muscles that serves as a conduit for gamete transport between the ovary and uterus. While Drosophila is a model system for tubular organ development, few studies have addressed the development of the fly's oviduct. Recent studies in Drosophila have identified mating-responsive genes and proteins whose levels in the oviduct are altered by mating. Since many of these molecules (e.g. Muscle LIM protein 84B, Coracle, Neuroglian) have known roles in the differentiation of muscle and epithelia of other organs, mating may trigger similar differentiation events in the oviduct. This led us to hypothesize that mating mediates the last stages of oviduct differentiation in which organ-specific specializations arise. RESULTS: Using electron- and confocal-microscopy we identified tissue-wide post-mating changes in the oviduct including differentiation of cellular junctions, remodeling of extracellular matrix, increased myofibril formation, and increased innervation. Analysis of once- and twice-mated females reveals that some mating-responsive proteins respond only to the first mating, while others respond to both matings. CONCLUSION: We uncovered ultrastructural changes in the mated oviduct that are consistent with the roles that mating-responsive proteins play in muscle and epithelial differentiation elsewhere. This suggests that mating triggers the late differentiation of the oviduct. Furthermore, we suggest that mating-responsive proteins that respond only to the first mating are involved in the final maturation of the oviduct while proteins that remain responsive to later matings are also involved in maintenance and ongoing function of the oviduct. Taken together, our results establish the oviduct as an attractive system to address mechanisms that regulate the late stages of differentiation and maintenance of a tubular organ.


Assuntos
Drosophila melanogaster/embriologia , Organogênese , Oviductos/embriologia , Junções Aderentes/ultraestrutura , Animais , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Matriz Extracelular/ultraestrutura , Feminino , Fertilidade , Masculino , Modelos Biológicos , Músculos/inervação , Músculos/ultraestrutura , Oviductos/citologia , Oviductos/inervação , Oviductos/ultraestrutura , Reprodução
14.
Elife ; 62017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718765

RESUMO

Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB's α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only 6% of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall.


Assuntos
Conectoma , Drosophila/anatomia & histologia , Drosophila/fisiologia , Corpos Pedunculados/anatomia & histologia , Corpos Pedunculados/fisiologia , Animais , Aprendizagem , Memória
15.
J Undergrad Neurosci Educ ; 4(1): A27-33, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-23493164

RESUMO

We describe exercises that illustrate the temperature sensitivity of synaptic transmission. The temperature dependence of synaptic transmission is demonstrated by cooling the larval Drosophila melanogaster preparation and recording excitatory junction potentials. Vesicle recycling is explored by utilizing a mutation of the shibire gene. This shibire mutant shows a robust reduction in synaptic vesicle recycling when temperature exceeds a known threshold (∼29° C). Students gain proficiency with the Drosophila larval neuromuscular junction preparation while investigating principles of vesicle release, vesicle recycling, synaptic facilitation and synaptic depression. We show that the viability of the larval preparation is prolonged in vitro with moderate cooling, which is particularly important when introducing the preparation as a novel exercise.

16.
Artigo em Inglês | MEDLINE | ID: mdl-26217193

RESUMO

Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing-the internal chiasma-arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin.


Assuntos
Evolução Biológica , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Neurópilo/fisiologia , Orientação/fisiologia , Vias Visuais/fisiologia , Animais , Colina O-Acetiltransferase/metabolismo , Drosophila , Neurônios/classificação , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
17.
J Comp Neurol ; 468(4): 596-613, 2004 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-14689489

RESUMO

While the larval neuromuscular junction (NMJ) of Drosophila has emerged as a model system to study synaptic function and development, little attention has been given to the study of the adult NMJ. Here we report an immunocytochemical and morphological characterization of an adult NMJ preparation of the prothorax. All muscles examined were innervated by small, uniform type II terminals (0.5-1.5 microm), a subset of which contained octopamine. Terminals classified as type I varied in their morphology across different muscles, ranging from strings or clusters of boutons (0.8-5.5 microm) to an elongate terminal (80-100 microm long) with few branches and contiguous swellings (3-15 microm) along its length. Analysis of the molecular composition of the NMJs during the first 5 days after eclosion revealed four major findings: 1) type I boutons increase in size during early adulthood; 2) Fasciclin II-immunoreactivity is not detectable at type I terminals, while DLG-immunoreactivity is observed at the synapse; 3) a Shaker-GFP fusion protein that localizes to all type I boutons in the larva is differentially localized at adult prothoracic NMJs; and 4) while all type I terminals contain glutamate, the glutamate receptor subunits, DGluRIIA and DGluRIIB, are expressed and clustered in only a subset of muscles. These findings suggest that maturation of the adult NMJ occurs during early adulthood and that muscle-specific properties may play a role in organizing synaptic components in the adult. Furthermore, these results demonstrate that there are major differences in the molecular organization of the adult and larval NMJs.


Assuntos
Drosophila melanogaster/ultraestrutura , Músculos/inervação , Junção Neuromuscular/ultraestrutura , Envelhecimento/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Imuno-Histoquímica , Microscopia Eletrônica , Músculos/fisiologia , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Octopamina/metabolismo , Canais de Potássio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Receptores de AMPA/metabolismo , Canais de Potássio Shaw , Transmissão Sináptica/fisiologia
18.
J Insect Physiol ; 56(3): 304-13, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19913024

RESUMO

The resting membrane potential (RMP) of most cells is not greatly influenced by the transmembrane calcium gradient because at rest, the membrane has very low permeability to calcium. We have observed, however, that the resting membrane potential of muscle cells in the larval bodywall of Drosophila melanogaster varies widely as the external calcium concentration is modified. The RMP depolarized as much as 21.8 mV/mM calcium at low concentrations, and on average, about 10 mV/mM across a range typical of neurophysiological investigations. The extent to which muscle RMP varies has important implications for the measurement of synaptic potentials as well. Two parameters of excitatory junctional potential (EJP) voltage were compared across a range of RMPs. EJP amplitude (DeltaV) and peak voltage (maxima) change as a function of RMP; on average, a 10 mV change in RMP elicits a 4-5 mV change in EJP amplitude and peak voltage. The influence of the calcium gradient on resting and synaptic membrane potentials led us to investigate the endogenous ion concentrations of larval hemolymph. In addition to the major monovalent ions and calcium, we report the first voltammetric analysis of magnesium concentration in larval fruit fly hemolymph.


Assuntos
Cálcio/metabolismo , Drosophila melanogaster/fisiologia , Potenciais da Membrana , Animais , Drosophila melanogaster/química , Drosophila melanogaster/crescimento & desenvolvimento , Eletrofisiologia , Hemolinfa/química , Hemolinfa/metabolismo , Larva/química , Larva/crescimento & desenvolvimento , Larva/fisiologia , Músculos/química , Músculos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA