RESUMO
Kombucha is a traditional healthy beverage usually made by the fermentation of sweetened tea with a symbiotic culture of bacteria and yeast. The consumption of kombucha is associated with numerous health benefits and therefore the beverage has attracted the attention of consumers worldwide. Non-typical substrates (fruits, vegetables, plants, herbs, dairy, and by-products) are being inoculated with the kombucha consortium in an attempt to develop new products. This review paper reviews the fermentation parameters for different non-tea substrates used to make kombucha, in addition to the findings obtained in terms of physico-chemical analysis, biological activities and sensory evaluation.
Assuntos
Bebidas , Leveduras , Bebidas/microbiologia , Bactérias , FermentaçãoRESUMO
The effect of maceration time and temperature on the phenolic compounds of Syrah grape musts was studied. Pre-fermentation cold (10 °C) and heat maceration (60, 70 and 80 °C) were applied and compared to traditional maceration (control, 25 °C). The macerations were monitored and the kinetic profile of the maceration was studied by taking samples at 0, 2, 4, 8, 24 and 48 h. The results showed that heat treatment had the most significant effect on the extraction of total polyphenol. A significant loss of anthocyanin content was observed when the maceration was extended beyond eight hours at high temperatures, while longer maceration times seemed to favor the extraction of tannins. A principal component analysis showed that independently of the vinification technique, and for the same grape varieties, different winegrowing regions and harvest years affected the phenolic composition of the grape skin.
Assuntos
Extratos Vegetais/química , Polifenóis/química , Vitis/química , Evolução Biológica , Espectrofotometria , Temperatura , Fatores de TempoRESUMO
An oenological strain of Saccharomyces cerevisiae was previously shown to produce a 5-10 kDa peptidic fraction responsible for the inhibition of malolactic fermentation (MLF). In the present study, we aim to further purify the anti-MLF peptides of this fraction. The yeast fermented synthetic grape juice medium was fractionated by ammonium sulfate precipitation combined with ultrafiltration. The 5-10 kDa fraction recovered at a saturation degree of 60%-80% was the only fraction that inhibited both the bacterial growth and the malate consumption in vivo. It also inhibited the malolactic enzyme activity in vitro at a pH range between 3.5 and 6.7. Therefore, it was purified by both anion and cation exchange chromatography. The eluates that inhibited the malolactic enzyme activity in vitro were migrated on Tricine SDS-PAGE and the protein bands were excised and sequenced by LC-MS/MS. The sequencing revealed nine peptides originating from eight proteins of S. cerevisiae. Two GAPDH cationic fragments of 0.9 and 1.373 kDa having a pI of 10.5 and 11 respectively, Wtm2p and Utr2p anionic fragments of 2.42 kDa with a pI of 3.5 and 4 respectively were thought to contribute the most to the MLF inhibition.
Assuntos
Fermentação , Malato Desidrogenase/antagonistas & inibidores , Malatos/metabolismo , Peptídeos/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Fermentação/efeitos dos fármacos , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Ácido Láctico/biossíntese , Peso Molecular , Oenococcus/efeitos dos fármacos , Oenococcus/crescimento & desenvolvimento , Oenococcus/metabolismo , Peptídeos/farmacologia , Vitis/metabolismoRESUMO
Bread is the oldest and most essential food consumed by humans, with its consumption exceeding nutritional needs and becoming part of cultural habits. Fermentation is an important step in the bread-making process, giving it its rheological, organoleptic, aromatic, and nutritional properties. Lactic acid bacteria and yeasts are both responsible for the fermentation step and part of the natural flour microbiota. In this study, we aimed to characterize LAB in three types of flour, namely, wheat, oat, and rice flour, using conventional phenotypic and biochemical assays and to carry out molecular-biology-based characterization via studying the rrn Operon using RFLP of the ITS region and via PCR using species-specific primers. Additionally, the effect of LAB diversity among the three types of flour and their influence on dough characteristics were assessed. Also, we evaluated the antagonistic effects of LAB on two bacterial (E. coli and S. aureus) and two fungal (Botrytis and Fusarium) pathogens. This study showed that LAB are not the predominant species in rice flour, while they were predominant in wheat and oat flour. Additionally, Lactobacillus sanfranciscencis was found to be the predominant species in wheat flour, while its presence in oat flour was minor. Finally, through their production of soluble substances, LAB exerted antagonistic effects on the four types of pathogenic microorganisms.
RESUMO
The study of yeast biodiversity represents an important step in the preservation of the local heritage, and this work in particular has an innovative character since no further studies have investigated 'Merwah', one of the main grape varieties used in winemaking in Lebanon. To gain deeper knowledge of the genetic diversity and population structure of native Saccharomyces cerevisiae wine strains, 202 isolates were collected during spontaneous alcoholic fermentation of eight must/wine samples of cultivar 'Merwah', over two consecutive years (2016, 2017) in a traditional winery in Mount Lebanon (1400 m a.s.l.). The isolates were identified as S. cerevisiae on the basis of their morphology and preliminary sequence analysis of their internal transcribed spacer (ITS) PCR. They were then characterised at the strain level by interdelta PCR and genotyped using multiplex PCR reactions of 12 microsatellite markers. High genetic diversity was observed for the studied population. To select potential yeast starter strains from this population, micro-fermentations were carried out for 22 S. cerevisiae strains that were selected as representative of the 'Merwah' wine yeast population in order to determine their technological and oenological properties. Three indigenous yeast strains might represent candidates for pilot-scale fermentation in the winery, based on relevant features such as high fermentation vigour, low production of volatile acidity and H2S and low residual sugar content at the end of alcoholic fermentation.
RESUMO
A previous study has shown that the malolactic fermentation (MLF) was inhibited during sequential fermentations performed with the pair Saccharomyces cerevisiae BDX/Oenococcus oeni Vitilactic F in synthetic grape juices. A yeast peptidic fraction with an apparent MW of 5-10kDa was involved in the inhibition. In the present study, the MLF was also inhibited in Cabernet Sauvignon and Syrah wines. The inhibition due to the peptidic fraction was maintained despite high phenolic contents. Kinetic studies showed that the peptidic fraction was gradually released during the alcoholic fermentation (AF). Its highest anti-MLF effect was reached when isolated from late stages of the AF stationary phase. The peptidic fraction was tested in vitro on cell-free bacterial cytosolic extracts containing the malolactic enzyme in a pH range between 3.5 and 6.7. Results showed that it was able to directly inhibit the malolactic enzyme activity with an increasing inhibitory kinetic correlated to the AF time at which it was collected.