Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Data Brief ; 53: 110214, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445199

RESUMO

Traditionally, biosorbents have been used to remove contaminants from polluted water, such as wastewater, landfill leachate, rainwater or drinking water. However, two alternative uses of biosorbents have been proposed relatively recently: the removal of heavy metals from fruit juices by biosorption and the use of saturated biosorbents as animal feed. Because these biosorbents are in contact with food or are used as animal feed, the concentration of contaminants in biosorbents must be known. In addition, the characterization of biosorbents is crucial because biosorbent properties affect both adsorption efficiency and the performance of full-scale biosorbent systems. This article presents data from Fourier transform infrared spectroscopy (FTIR) analysis, and the concentration of toxic metals (determined by ICP-MS) as well as pesticide residues was determined in ten biomass samples, namely, pea skins, straw, seaweed Fucus vesiculosus, wheat bran, rye bran, raspberry seeds, peat, buckwheat husks, highbush blueberry pulp, and blackcurrant pulp. Selected biomass samples were also characterized by scanning electron microscopy (SEM), nitrogen physisorption analysis, and pyrolysis-gas chromatography-mass spectrometry (Py-GC/ MS/FID) analysis.

2.
Water Sci Technol ; 68(10): 2208-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24292469

RESUMO

The increasing industrial use of thallium has raised the need for removal of this highly toxic element from wastewater. Thallium is more toxic than cadmium, copper, zinc, lead and mercury and as it is easily accumulated in humans, animals and plants, it poses a threat to both the environment and human health. Peat has been used as an effective, relatively cheap and easily available sorbent to treat waters containing heavy metals. In this study, peat was characterized and used as sorbent for the removal of Tl(I) ions from aqueous solution. The effect of initial Tl(I) concentration, pH, contact time, temperature and ionic strength was studied in batch mode. The maximum sorption capacity of peat reached 24.14 mg/g at 20 °C and initial Tl(I) concentration of 500 mg/L. Sorption capacity was found to be pH dependent and maximum uptake occurred at pH 10. Kinetic data revealed that sorption was relatively rapid - 82.8% of Tl(I) ions were sorbed in the first 10 min. The kinetics of sorption was analyzed using pseudo-first order and pseudo-second order models. Results show that peat can be used as an effective sorbent to remove Tl(I) ions from aqueous solutions.


Assuntos
Solo/química , Tálio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Concentração Osmolar , Temperatura , Purificação da Água
3.
J Hazard Mater ; 304: 553-6, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26607871

RESUMO

Thousands of articles have been devoted to examine different types of biosorbents and their use in cleaning polluted waters. An important objective of some studies has been the identification of the biosorption mechanisms. This type of investigation is not always performed, as it can only be done if scientists are aware of all mechanisms that, at least theoretically, control the removal of the target substances. Mistakes are often made, even in highly cited review articles, where biosorption mechanisms are named and/or grouped. The aim of this article is to highlight errors and inaccuracies as well as to discuss different classification systems of the biosorption mechanisms. This article serves as a guide, as well as a platform for discussion among researchers involved in the investigation of biosorbents, in an effort to avoid reproducing errors in subsequent articles.


Assuntos
Metais/química , Poluentes Químicos da Água/química , Adsorção , Comunicação , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA