Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Histochem Cytochem ; 67(12): 863-871, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638440

RESUMO

Optic development involves sequential interactions between several different tissue types, including the overlying ectoderm, adjacent mesoderm, and neural crest mesenchyme and the neuroectoderm. In an ongoing expression screen, we identified that Tfap2ß, Casq2, Penk, Zic1, and Zic3 are expressed in unique cell types in and around the developing eye. Tfap2ß, Zic1, and Zic3 are transcription factors, Casq2 is a calcium binding protein and Penk is a neurotransmitter. Tfap2ß, Zic1, and Zic3 have reported roles in brain and craniofacial development, while Casq2 and Penk have unknown roles. These five genes are expressed in the major tissue types in the eye, including the muscles, nerves, cornea, and sclera. Penk expression is found in the sclera and perichondrium. At E12.5 and E15.5, the extra-ocular muscles express Casq2, the entire neural retina expresses Zic1, and Zic3 is expressed in the optic disk and lip of the optic cup. The expression of Tfap2ß expanded from corneal epithelium to the neural retina between E12.5 to E15.5. These genes are expressed in similar domains as Hedgehog (Gli1, and Ptch1) and the Wnt (Lef1) pathways. The expression patterns of these five genes warrant further study to determine their role in eye morphogenesis.


Assuntos
Calsequestrina/genética , Encefalinas/genética , Olho/embriologia , Proteínas de Homeodomínio/genética , Camundongos/embriologia , Precursores de Proteínas/genética , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Animais , Olho/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/genética , Camundongos Endogâmicos C57BL , Retina/embriologia , Retina/ultraestrutura , Esclera/embriologia , Esclera/ultraestrutura
2.
Cell Cycle ; 6(21): 2612-9, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17912035

RESUMO

Historically, two main forms of cell death have been distinguished: apoptosis and necrosis. Apoptosis was initially considered as the only physiological and programmed form of cell death. This type of death is recurrently associated with caspases, a family of cysteine proteases activated in apoptotic conditions. However, it is now widely recognized that programmed cell death (PCD) can also occur in the complete absence of caspase activation. The existence of non-caspase PCD pathways was corroborated by the discovery of caspase-independent executioners, such as the mitochondrial protein Apoptosis-Inducing Factor (AIF). Necrosis has often been viewed as an accidental and uncontrolled cell death process. Nevertheless, increasing evidence shows that, like apoptosis, necrosis could be a highly orchestrated type of PCD. Indeed, apoptosis and necrosis present more similarities than it has been originally thought. Here, we summarize the different classifications of PCD and the current knowledge of a necrotic PCD pathway mediated by AIF: alkylating DNA-damage mediated death. We also outline the molecular mechanisms controlling this form of PCD and discuss their potential relevance in physiological and pathological settings. These emerging data on the molecular mechanisms regulating programmed necrosis may certainly have potent therapeutic consequences in treating both apoptotic-resistant tumors and degenerating adult neurons.


Assuntos
Fator de Indução de Apoptose/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Morte Celular/genética , Morte Celular/fisiologia , Humanos , Necrose/classificação , Necrose/enzimologia , Necrose/genética , Necrose/patologia
3.
J Biol Chem ; 281(27): 18507-18, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16644725

RESUMO

Apoptosis-inducing factor (AIF) is a bifunctional NADH oxidase involved in mitochondrial respiration and caspase-independent apoptosis. Three alternatively spliced mRNA isoforms of AIF have been identified previously: AIF, AIF-exB, and AIFsh. Here, we report the cloning and the biochemical characterization of a new isoform named AIF short 2 (AIFsh2). AIFsh2 transcript includes a previously unknown exon placed between exons 9 and 10 of AIF. The resulting AIFsh2 protein, which localizes in mitochondria, corresponds to the oxidoreductase domain of AIF. In this way, AIFsh2 exhibits similar NADH oxidase activity to AIF and generates reactive oxygen species. Like AIF, AIFsh2 is released from mitochondria to cytosol after an apoptotic insult in a calpain or cathepsin-dependent manner. However, in contrast to AIF, AIFsh2 does not induce nuclear apoptosis. Thus, it seems that the reactive oxygen species produced by the oxidoreductase domain of AIF/AIFsh2 are not important for AIF-dependent nuclear apoptosis. In addition, we demonstrate that the AIFsh2 mRNA is absent in normal brain tissue, whereas it is expressed in neuroblastoma-derived cells, suggesting a different regulation in normal and transformed cells from the brain lineage. Together, our results reveal that AIF yields an original and independent genetic regulation of the two AIF functions. This is an important issue to understand the physiological role of this protein.


Assuntos
Fator de Indução de Apoptose/genética , Éxons/genética , Mitocôndrias/enzimologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Apoptose , Fator de Indução de Apoptose/metabolismo , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Mitocôndrias Hepáticas/enzimologia , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Especificidade de Órgãos , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA