Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(8): 083602, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709758

RESUMO

We report the detection of individual emitters in silicon belonging to seven different families of optically active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employed for integrated photonics. Single photon emission is demonstrated over the 1.1-1.55 µm range, spanning the O and C telecom bands. We analyze their photoluminescence spectra, dipolar emissions, and optical relaxation dynamics at 10 K. For a specific family, we show a constant emission intensity at saturation from 10 K to temperatures well above the 77 K liquid nitrogen temperature. Given the advanced control over nanofabrication and integration in silicon, these individual artificial atoms are promising systems to investigate for Si-based quantum technologies.

2.
Opt Lett ; 40(2): 174-7, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25679837

RESUMO

We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 µm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane.

3.
Phys Rev Lett ; 110(16): 163603, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679602

RESUMO

We present a novel experimental technique that can differentiate unequivocally between chaotic light and coherent light with amplitude fluctuations, and thus permits us to characterize unambiguously the output of a laser. This technique consists of measuring the second-order intensity cross correlation at the outputs of an unbalanced Michelson interferometer. It is applied to a chaotic light source and to the output of a semiconductor nanolaser whose "standard" intensity correlation function above threshold displays values compatible with a mixture of coherent and chaotic light. Our experimental results demonstrate that the output of such lasers is not partially chaotic but is indeed a coherent state with amplitude fluctuations.

4.
Phys Rev Lett ; 108(12): 126808, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540615

RESUMO

The topography and the electronic structure of InAsP/InP quantum dots are probed by cross-sectional scanning tunneling microscopy and spectroscopy. The study of the local density of states in such large quantum dots confirms the discrete nature of the electronic levels whose wave functions are measured by differential conductivity mapping. Because of their large dimensions, the energy separation between the discrete electronic levels is low, allowing for quantization in both the lateral and growth directions as well as the observation of the harmonicity of the dot lateral potential.

5.
Phys Rev Lett ; 106(20): 203902, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668229

RESUMO

Periodically structured materials can sustain both optical and mechanical modes. Here we investigate and observe experimentally the optomechanical properties of a conventional two-dimensional suspended photonic crystal defect cavity with a mode volume of ~3(λ/n)³. Two families of mechanical modes are observed: flexural modes, associated to the motion of the whole suspended membrane, and localized modes with frequencies in the GHz regime corresponding to localized phonons in the optical defect cavity of diffraction-limited size. We demonstrate direct measurements of the optomechanical vacuum coupling rate using a frequency calibration technique. The highest measured values exceed 80 kHz, demonstrating high coupling of optical and mechanical modes in such structures.

6.
Opt Lett ; 35(8): 1154-6, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20410950

RESUMO

We report on lasing at room temperature and at telecommunications wavelength from photonic crystal nanocavities based on InAsP/InP quantum dots. Such laser cavities with a small modal volume and high quality factor display a high spontaneous emission coupling factor (beta). Lasing is confirmed by measuring the second-order autocorrelation function. A smooth transition from chaotic to coherent emission is observed, and coherent emission is obtained at eight times the threshold power.

7.
Phys Rev Lett ; 105(18): 180502, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231093

RESUMO

A novel metal-coated nanocylinder-cavity architecture fully compatible with III-V GaInAs technology and benefiting from a broad spectral range enhancement of the local density of states is proposed as an integrated source of nonclassical light. Because of a judicious selection of the mode volume, the cavity combines good collection efficiency (≈45%), large Purcell factors (≈15) over a 80 nm spectral range, and a low sensitivity to inevitable spatial mismatches between the single emitter and the cavity mode. This represents a decisive step towards the implementation of reliable solid-state devices for the generation of entangled photon pairs at infrared wavelengths.

8.
Opt Lett ; 34(5): 554-6, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19252549

RESUMO

We report on a series of experiments on the dynamics of spontaneous emission controlled nanolasers. The laser cavity is a photonic-crystal slab cavity, embedding self-assembled quantum dots as gain material. The implementation of cavity electrodynamics effects increases the large signal modulation bandwidth significantly, with measured modulation speeds of the order of 10 GHz while keeping an extinction ratio of 19 dB. A linear transient wavelength shift is reported, corresponding to a chirp of less than 100 pm for a 35 ps laser pulse. We observe that the chirp characteristics are independent of the repetition rate of the laser up to 10 GHz.

9.
Opt Lett ; 33(22): 2635-7, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19015692

RESUMO

Using a fully vectorial frequency-domain aperiodic Fourier modal method, we study nanowire metallic mirrors and their photonic performance. We show that the performance of standard quarter-wave Bragg mirrors at subwavelength diameters is surprisingly poor, while engineered metallic mirrors that incorporate a thin dielectric adlayer may offer reflectance larger than 90% even for diameters as small as lambda/5.

10.
Phys Rev Lett ; 95(18): 183901, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16383902

RESUMO

Photonic wires are the simplest extended low-dimensional systems. Photonic crystal confinement confers them a divergent density of states at zero-group-velocity points, which leads to enhancement of spontaneous emission rates [D. Kleppner, Phys. Rev. Lett. 47, 233 (1981)10.1103/Phys. Rev. Lett. 47.233]. We experimentally evidence, for the first time, the spectral signature of these Purcell factor singularities, using the out-of-plane emission of InAs quantum dots buried in GaAs/AlGaAs based photonic crystal based wire. Additionally, in-plane collection at the wire exit shows large enhancements of the signal at some of the density of states singularities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA