Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hepatol ; 80(2): 251-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36972796

RESUMO

BACKGROUND & AIMS: Chronic viral infections present serious public health challenges; however, direct-acting antivirals (DAAs) are now able to cure nearly all patients infected with hepatitis C virus (HCV), representing the only cure of a human chronic viral infection to date. DAAs provide a valuable opportunity to study immune pathways in the reversal of chronic immune failures in an in vivo human system. METHODS: To leverage this opportunity, we used plate-based single-cell RNA-seq to deeply profile myeloid cells from liver fine needle aspirates in patients with HCV before and after DAA treatment. We comprehensively characterised liver neutrophils, eosinophils, mast cells, conventional dendritic cells, plasmacytoid dendritic cells, classical monocytes, non-classical monocytes, and macrophages, and defined fine-grained subpopulations of several cell types. RESULTS: We discovered cell type-specific changes post-cure, including an increase in MCM7+STMN1+ proliferating CD1C+ conventional dendritic cells, which may support restoration from chronic exhaustion. We observed an expected downregulation of interferon-stimulated genes (ISGs) post-cure as well as an unexpected inverse relationship between pre-treatment viral load and post-cure ISG expression in each cell type, revealing a link between viral loads and sustained modifications of the host's immune system. We found an upregulation of PD-L1/L2 gene expression in ISG-high neutrophils and IDO1 expression in eosinophils, pinpointing cell subpopulations crucial for immune regulation. We identified three recurring gene programmes shared by multiple cell types, distilling core functions of the myeloid compartment. CONCLUSIONS: This comprehensive single-cell RNA-seq atlas of human liver myeloid cells in response to cure of chronic viral infections reveals principles of liver immunity and provides immunotherapeutic insights. CLINICAL TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (NCT02476617). IMPACT AND IMPLICATIONS: Chronic viral liver infections continue to be a major public health problem. Single-cell characterisation of liver immune cells during hepatitis C and post-cure provides unique insights into the architecture of liver immunity contributing to the resolution of the first curable chronic viral infection of humans. Multiple layers of innate immune regulation during chronic infections and persistent immune modifications after cure are revealed. Researchers and clinicians may leverage these findings to develop methods to optimise the post-cure environment for HCV and develop novel therapeutic approaches for other chronic viral infections.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Antivirais/uso terapêutico , Infecção Persistente , Hepatite C/tratamento farmacológico , Hepacivirus/genética
2.
Genetics ; 182(1): 133-44, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19293139

RESUMO

Most animals have two centrioles in spermatids (the distal and proximal centrioles), but insect spermatids seem to contain only one centriole (Fuller 1993), which functionally resembles the distal centriole. Using fluorescent centriolar markers, we identified a structure near the fly distal centriole that is reminiscent of a proximal centriole (i.e., proximal centriole-like, or PCL). We show that the PCL exhibits several features of daughter centrioles. First, a single PCL forms near the proximal segment of the older centriole. Second, the centriolar proteins SAS-6, Ana1, and Bld10p/Cep135 are in the PCL. Third, PCL formation depends on SAK/PLK4 and SAS-6. Using a genetic screen for PCL defect, we identified a mutation in the gene encoding the conserved centriolar protein POC1, which is part of the daughter centriole initiation site (Kilburn et al. 2007) in Tetrahymena. We conclude that the PCL resembles an early intermediate structure of a forming centriole, which may explain why no typical centriolar structure is observed under electron microscopy. We propose that, during the evolution of insects, the proximal centriole was simplified by eliminating the later steps in centriole assembly. The PCL may provide a unique model to study early steps of centriole formation.


Assuntos
Centríolos/genética , Proteínas de Drosophila/genética , Drosophila/genética , Espermátides/fisiologia , Animais , Animais Geneticamente Modificados , Centríolos/metabolismo , Cílios/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Masculino , Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA