Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Eur J Immunol ; 52(4): 566-581, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092032

RESUMO

T-bet is the lineage-specifying transcription factor for CD4+ TH 1 cells. T-bet has also been found in other CD4+ T cell subsets, including TH 17 cells and Treg, where it modulates their functional characteristics. However, we lack information on when and where T-bet is expressed during T cell differentiation and how this impacts T cell differentiation and function. To address this, we traced the ontogeny of T-bet-expressing cells using a fluorescent fate-mapping mouse line. We demonstrate that T-bet is expressed in a subset of CD4+ T cells that have naïve cell surface markers and transcriptional profile and that this novel cell population is phenotypically and functionally distinct from previously described populations of naïve and memory CD4+ T cells. Naïve-like T-bet-experienced cells are polarized to the TH 1 lineage, predisposed to produce IFN-γ upon cell activation, and resist repolarization to other lineages in vitro and in vivo. These results demonstrate that lineage-specifying factors can polarize T cells in the absence of canonical markers of T cell activation and that this has an impact on the subsequent T-helper response.


Assuntos
Proteínas com Domínio T , Células Th1 , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Ativação Linfocitária , Camundongos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Células Th2
2.
J Immunol ; 206(11): 2725-2739, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34021046

RESUMO

Innate lymphoid cells are central to the regulation of immunity at mucosal barrier sites, with group 2 innate lymphoid cells (ILC2s) being particularly important in type 2 immunity. In this study, we demonstrate that microRNA(miR)-142 plays a critical, cell-intrinsic role in the homeostasis and function of ILC2s. Mice deficient for miR-142 expression demonstrate an ILC2 progenitor-biased development in the bone marrow, and along with peripheral ILC2s at mucosal sites, these cells display a greatly altered phenotype based on surface marker expression. ILC2 proliferative and effector functions are severely dysfunctional following Nippostrongylus brasiliensis infection, revealing a critical role for miR-142 isoforms in ILC2-mediated immune responses. Mechanistically, Socs1 and Gfi1 expression are regulated by miR-142 isoforms in ILC2s, impacting ILC2 phenotypes as well as the proliferative and effector capacity of these cells. The identification of these novel pathways opens potential new avenues to modulate ILC2-dependent immune functions.


Assuntos
Linfócitos/imunologia , MicroRNAs/imunologia , Animais , Células HEK293 , Homeostase , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética
3.
Am J Transplant ; 20(10): 2715-2727, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277570

RESUMO

Organ transplantation is often lifesaving, but the long-term deleterious effects of combinatorial immunosuppression regimens and allograft failure cause significant morbidity and mortality. Long-term graft survival in the absence of continuing immunosuppression, defined as operational tolerance, has never been described in the context of multiple major histocompatibility complex (MHC) mismatches. Here, we show that miR-142 deficiency leads to indefinite allograft survival in a fully MHC mismatched murine cardiac transplant model in the absence of exogenous immunosuppression. We demonstrate that the cause of indefinite allograft survival in the absence of miR-142 maps specifically to the T cell compartment. Of therapeutic relevance, temporal deletion of miR-142 in adult mice prior to transplantation of a fully MHC mismatched skin allograft resulted in prolonged allograft survival. Mechanistically, miR-142 directly targets Tgfbr1 for repression in regulatory T cells (TREG ). This leads to increased TREG sensitivity to transforming growth factor - beta and promotes transplant tolerance via an augmented peripheral TREG response in the absence of miR-142. These data identify manipulation of miR-142 as a promising approach for the induction of tolerance in human transplantation.


Assuntos
Rejeição de Enxerto , MicroRNAs , Aloenxertos , Animais , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Linfócitos T Reguladores , Tolerância ao Transplante , Transplante Homólogo
4.
PLoS Pathog ; 12(11): e1005998, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27802350

RESUMO

Nematode parasites secrete molecules which regulate the mammalian immune system, but their genetic intractability is a major impediment to identifying and characterising the biological effects of these molecules. We describe here a novel system for heterologous expression of helminth secreted proteins in the natural parasite of mice, Trypanosoma musculi, which can be used to analyse putative immunomodulatory functions. Trypanosomes were engineered to express a secreted acetylcholinesterase from Nippostrongylus brasiliensis. Infection of mice with transgenic parasites expressing acetylcholinesterase resulted in truncated infection, with trypanosomes cleared early from the circulation. Analysis of cellular phenotypes indicated that exposure to acetylcholinesterase in vivo promoted classical activation of macrophages (M1), with elevated production of nitric oxide and lowered arginase activity. This most likely occurred due to the altered cytokine environment, as splenocytes from mice infected with T. musculi expressing acetylcholinesterase showed enhanced production of IFNγ and TNFα, with diminished IL-4, IL-13 and IL-5. These results suggest that one of the functions of nematode secreted acetylcholinesterase may be to alter the cytokine environment in order to inhibit development of M2 macrophages which are deleterious to parasite survival. Transgenic T. musculi represents a valuable new vehicle to screen for novel immunoregulatory proteins by extracellular delivery in vivo to the murine host.


Assuntos
Acetilcolinesterase/imunologia , Organismos Geneticamente Modificados/metabolismo , Organismos Geneticamente Modificados/parasitologia , Proteínas de Protozoários/imunologia , Tripanossomíase/imunologia , Acetilcolinesterase/metabolismo , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Immunoblotting , Camundongos , Proteínas de Protozoários/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma , Tripanossomíase/enzimologia
6.
Mucosal Immunol ; 17(1): 1-12, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37952849

RESUMO

Type-3 innate lymphoid cells (ILC3) respond to localized environmental cues to regulate homeostasis and orchestrate immunity in the intestine. The intestinal epithelium is an important upstream regulator and downstream target of ILC3 signaling, however, the complexity of mucosal tissues can hinder efforts to define specific interactions between these two compartments. Here, we employ a reductionist co-culture system of murine epithelial small intestinal organoids (SIO) with ILC3 to uncover bi-directional signaling mechanisms that underlie intestinal homeostasis. We report that ILC3 induce global transcriptional changes in intestinal epithelial cells, driving the enrichment of secretory goblet cell signatures. We find that SIO enriched for goblet cells promote NKp46+ ILC3 and interleukin (IL)-22 expression, which can feedback to induce IL-22-mediated epithelial transcriptional signatures. However, we show that epithelial regulation of ILC3 in this system is contact-dependent and demonstrate a role for epithelial Delta-Like-Canonical-Notch-Ligand (Dll) in driving IL-22 production by ILC3, via subset-specific Notch1-mediated activation of T-bet+ ILC3. Finally, by interfering with Notch ligand-receptor dynamics, ILC3 appear to upregulate epithelial Atoh1 to skew secretory lineage determination in SIO-ILC3 co-cultures. This research outlines two complimentary bi-directional signaling modules between the intestinal epithelium and ILC3, which may be relevant in intestinal homeostasis and disease.


Assuntos
Interleucina 22 , Linfócitos , Camundongos , Animais , Imunidade Inata , Ligantes , Mucosa Intestinal , Receptores Notch/metabolismo
7.
Cell Rep ; 42(11): 113425, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37950867

RESUMO

Innate lymphoid cells (ILCs) are tissue-resident effector cells with roles in tissue homeostasis, protective immunity, and inflammatory disease. Group 3 ILCs (ILC3s) are classically defined by the master transcription factor RORγt. However, ILC3 can be further subdivided into subsets that share type 3 effector modules that exhibit significant ontological, transcriptional, phenotypic, and functional heterogeneity. Notably lymphoid tissue inducer (LTi)-like ILC3s mediate effector functions not typically associated with other RORγt-expressing lymphocytes, suggesting that additional transcription factors contribute to dictate ILC3 subset phenotypes. Here, we identify Bcl6 as a subset-defining transcription factor of LTi-like ILC3s in mice and humans. Deletion of Bcl6 results in dysregulation of the LTi-like ILC3 transcriptional program and markedly enhances expression of interleukin-17A (IL-17A) and IL-17F in LTi-like ILC3s in a manner in part dependent upon the commensal microbiota-and associated with worsened inflammation in a model of colitis. Together, these findings redefine our understanding of ILC3 subset biology.


Assuntos
Linfócitos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Animais , Humanos , Camundongos , Imunidade Inata , Linfócitos/metabolismo , Tecido Linfoide/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fatores de Transcrição/metabolismo
8.
Front Immunol ; 13: 903678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634348

RESUMO

Cardiovascular diseases (CVDs) are responsible for most pre-mature deaths worldwide, contributing significantly to the global burden of disease and its associated costs to individuals and healthcare systems. Obesity and associated metabolic inflammation underlie development of several major health conditions which act as direct risk factors for development of CVDs. Immune system responses contribute greatly to CVD development and progression, as well as disease resolution. Innate lymphoid cells (ILCs) are a family of helper-like and cytotoxic lymphocytes, typically enriched at barrier sites such as the skin, lung, and gastrointestinal tract. However, recent studies indicate that most solid organs and tissues are home to resident populations of ILCs - including those of the cardiovascular system. Despite their relative rarity, ILCs contribute to many important biological effects during health, whilst promoting inflammatory responses during tissue damage and disease. This mini review will discuss the evidence for pathological and protective roles of ILCs in CVD, and its associated risk factor, obesity.


Assuntos
Doenças Cardiovasculares , Linfócitos , Doenças Cardiovasculares/metabolismo , Humanos , Imunidade Inata , Inflamação , Obesidade/metabolismo
9.
Front Immunol ; 13: 903688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844597

RESUMO

Inflammatory bowel disease (IBD) is an idiopathic condition characterized by chronic relapsing inflammation in the intestine. While the precise etiology of IBD remains unknown, genetics, the gut microbiome, environmental factors, and the immune system have all been shown to contribute to the disease pathophysiology. In recent years, attention has shifted towards the role that innate lymphoid cells (ILCs) may play in the dysregulation of intestinal immunity observed in IBD. ILCs are a group of heterogenous immune cells which can be found at mucosal barriers. They act as critical mediators of the regulation of intestinal homeostasis and the orchestration of its inflammatory response. Despite helper-like type 1 ILCs (ILC1s) constituting a particularly rare ILC population in the intestine, recent work has suggested that an accumulation of intestinal ILC1s in individuals with IBD may act to exacerbate its pathology. In this review, we summarize existing knowledge on helper-like ILC1 plasticity and their classification in murine and human settings. Moreover, we discuss what is currently understood about the roles that ILC1s may play in the progression of IBD pathogenesis.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Humanos , Imunidade Inata , Intestinos , Linfócitos , Camundongos
10.
Cell Mol Gastroenterol Hepatol ; 14(3): 625-641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35660024

RESUMO

BACKGROUND & AIMS: Resistance to single cytokine blockade, namely anti-tumor necrosis factor (TNF) therapy, is a growing concern for patients with inflammatory bowel disease (IBD). The transcription factor T-bet is a critical regulator of intestinal homeostasis, is genetically linked to mucosal inflammation and controls the expression of multiples genes such as the pro-inflammatory cytokines interferon (IFN)-γ and TNF. Inhibiting T-bet may therefore offer a more attractive prospect for treating IBD but remains challenging to target therapeutically. In this study, we evaluate the effect of targeting the transactivation function of T-bet using inhibitors of P-TEFb (CDK9-cyclin T), a transcriptional elongation factor downstream of T-bet. METHODS: Using an adaptive immune-mediated colitis model, human colonic lymphocytes from patients with IBD and multiple large clinical datasets, we investigate the effect of cyclin-dependent kinase 9 (CDK9) inhibitors on cytokine production and gene expression in colonic CD4+ T cells and link these genetic modules to clinical response in patients with IBD. RESULTS: Systemic CDK9 inhibition led to histological improvement of immune-mediated colitis and was associated with targeted suppression of colonic CD4+ T cell-derived IFN-γ and IL-17A. In colonic lymphocytes from patients with IBD, CDK9 inhibition potently repressed genes responsible for pro-inflammatory signalling, and in particular genes regulated by T-bet. Remarkably, CDK9 inhibition targeted genes that were highly expressed in anti-TNF resistant IBD and that predicted non-response to anti-TNF therapy. CONCLUSION: Collectively, our findings reveal CDK9 as a potential target for anti-TNF-resistant IBD, which has the potential for rapid translation to the clinic.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Colite/tratamento farmacológico , Quinase 9 Dependente de Ciclina , Citocinas/metabolismo , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Inibidores do Fator de Necrose Tumoral
11.
Front Immunol ; 13: 893844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711456

RESUMO

Acetylcholine (ACh) from neuronal and non-neuronal sources plays an important role in the regulation of immune responses and is associated with the development of several disease pathologies. We have previously demonstrated that group 2 innate lymphoid cell (ILC2)-derived ACh is required for optimal type 2 responses to parasitic infection and therefore sought to determine whether this also plays a role in allergic inflammation. RoraCre+ChatLoxP mice (in which ILC2s cannot synthesize ACh) were exposed to an allergenic extract of the fungus Alternaria alternata, and immune responses in the airways and lung tissues were analyzed. Airway neutrophilia and expression of the neutrophil chemoattractants CXCL1 and CXCL2 were enhanced 24 h after exposure, suggesting that ILC2-derived ACh plays a role in limiting excessive pulmonary neutrophilic inflammation. The effect of non-selective depletion of ACh was examined by intranasal administration of a stable parasite-secreted acetylcholinesterase. Depletion of airway ACh in this manner resulted in a more profound enhancement of neutrophilia and chemokine expression, suggesting multiple cellular sources for the release of ACh. In contrast, depletion of ACh inhibited Alternaria-induced activation of ILC2s, suppressing the expression of IL-5, IL-13, and subsequent eosinophilia. Depletion of ACh reduced macrophages with an alternatively activated M2 phenotype and an increase in M1 macrophage marker expression. These data suggest that ACh regulates allergic airway inflammation in several ways, enhancing ILC2-driven eosinophilia but suppressing neutrophilia through reduced chemokine expression.


Assuntos
Eosinofilia , Pneumonia , Acetilcolina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Imunidade Inata , Inflamação/metabolismo , Interleucina-33/metabolismo , Pulmão , Linfócitos , Camundongos
12.
Nat Commun ; 13(1): 6407, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302767

RESUMO

Airway inflammation and remodelling are important pathophysiologic features in asthma and other respiratory conditions. An intact epithelial cell layer is crucial to maintain lung homoeostasis, and this depends on intercellular adhesion, whilst damaged respiratory epithelium is the primary instigator of airway inflammation. The Coxsackievirus Adenovirus Receptor (CAR) is highly expressed in the epithelium where it modulates cell-cell adhesion stability and facilitates immune cell transepithelial migration. However, the contribution of CAR to lung inflammation remains unclear. Here we investigate the mechanistic contribution of CAR in mediating responses to the common aeroallergen, House Dust Mite (HDM). We demonstrate that administration of HDM in mice lacking CAR in the respiratory epithelium leads to loss of peri-bronchial inflammatory cell infiltration, fewer goblet-cells and decreased pro-inflammatory cytokine release. In vitro analysis in human lung epithelial cells confirms that loss of CAR leads to reduced HDM-dependent inflammatory cytokine release and neutrophil migration. Epithelial CAR depletion also promoted smooth muscle cell proliferation mediated by GSK3ß and TGF-ß, basal matrix production and airway hyperresponsiveness. Our data demonstrate that CAR coordinates lung inflammation through a dual function in leucocyte recruitment and tissue remodelling and may represent an important target for future therapeutic development in inflammatory lung diseases.


Assuntos
Pneumonia , Pyroglyphidae , Receptores Virais , Animais , Humanos , Camundongos , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Mucosa Respiratória/metabolismo , Receptores Virais/metabolismo
13.
Cell Rep ; 40(9): 111281, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044863

RESUMO

Organoid-based models of murine and human innate lymphoid cell precursor (ILCP) maturation are presented. First, murine intestinal and pulmonary organoids are harnessed to demonstrate that the epithelial niche is sufficient to drive tissue-specific maturation of all innate lymphoid cell (ILC) groups in parallel, without requiring subset-specific cytokine supplementation. Then, more complex human induced pluripotent stem cell (hiPSC)-based gut and lung organoid models are used to demonstrate that human epithelial cells recapitulate maturation of ILC from a stringent systemic human ILCP population, but only when the organoid-associated stromal cells are depleted. These systems offer versatile and reductionist models to dissect the impact of environmental and mucosal niche cues on ILC maturation. In the future, these could provide insight into how ILC activity and development might become dysregulated in chronic inflammatory diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Animais , Diferenciação Celular , Humanos , Imunidade Inata , Imunoterapia , Linfócitos , Camundongos
14.
Cardiovasc Res ; 117(12): 2434-2449, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33483751

RESUMO

Cardiovascular diseases (CVD) are a leading cause of human death worldwide. Over the past two decades, the emerging field of cardioimmunology has demonstrated how cells of the immune system play vital roles in the pathogenesis of CVD. MicroRNAs (miRNAs) are critical regulators of cellular identity and function. Cell-intrinsic, as well as cell-extrinsic, roles of immune and inflammatory cell-derived miRNAs have been, and continue to be, extensively studied. Several 'immuno-miRNAs' appear to be specifically expressed or demonstrate greatly enriched expression within leucocytes. Identification of miRNAs as critical regulators of immune system signalling pathways has posed the question of whether and how targeting these molecules therapeutically, may afford opportunities for disease treatment and/or management. As the field of cardioimmunology rapidly continues to advance, this review discusses findings from recent human and murine studies which contribute to our understanding of how leucocytes of innate and adaptive immunity are regulated-and may also regulate other cell types, via the actions of the miRNAs they express, in the context of CVD. Finally, we focus on available information regarding miRNA regulation of regulatory T cells and argue that targeted manipulation of miRNA regulated pathways in these cells may hold therapeutic promise for the treatment of CVD and associated risk factors.


Assuntos
Imunidade Adaptativa , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Imunitário/metabolismo , Imunidade Inata , MicroRNAs/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/imunologia , Regulação da Expressão Gênica , Humanos , Sistema Imunitário/imunologia , Imunoterapia , MicroRNAs/genética , Transdução de Sinais
15.
J Crohns Colitis ; 15(12): 2054-2065, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34120187

RESUMO

BACKGROUND AND AIMS: Differential responsiveness to interleukin [IL]-2 between effector CD4+ T cells [Teff] and regulatory T cells [Treg] is a fundamental mechanism of immunoregulation. The single nucleotide polymorphism [SNP] rs61839660, located within IL2RA [CD25], has been associated with the development of Crohn's disease [CD]. We sought to identify the T cell immune phenotype of IBD patients who carry this SNP. METHODS: Teff and Treg were isolated from individuals homozygous [TT], heterozygous [CT], or wild-type [CC] for the minor allele at rs61839660, and used for phenotyping [flow cytometry, Cytometry Time Of Flight] functional assays or T cell receptor [TCR] sequencing. Phosphorylation of signal transducer and activator of transcription 5 [STAT5] was assessed in response to IL-2, IL-7, and in the presence of basiliximab, a monoclonal antibody directed against CD25. Teff pro-inflammatory cytokine expression levels were assessed by reverse transcription quantitative polymerase chain reaction after IL-2 and/or TCR stimulation. RESULTS: Presence of the minor T allele enhances CD25 expression, leading to increased STAT5 phosphorylation and pro-inflammatory cytokine transcript expression by Teff in response to IL-2 stimulation in vitro. Teff from TT individuals demonstrate a more activated gut homing phenotype. TCR sequencing analysis suggests that TT patients may have a reduced clonal capacity to mount an optimal regulatory T cell response. CONCLUSIONS: rs61839660 regulates the responsiveness of T cells to IL-2 signalling by modulating CD25 expression. As low-dose IL-2 is being trialled as a selective Treg modulator in CD, these findings highlight the potential for adverse effects in patients with this genotype.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Doença de Crohn/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Interleucina-2/imunologia , Linfócitos T Reguladores/imunologia , Estudos de Casos e Controles , Doença de Crohn/imunologia , Bases de Dados Factuais , Feminino , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Medicina Estatal , Reino Unido
16.
Front Immunol ; 12: 760198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795671

RESUMO

Innate lymphoid cells (ILC) play a significant role in the intestinal immune response and T-bet+ CD127+ group 1 cells (ILC1) have been linked to the pathogenesis of human inflammatory bowel disease (IBD). However, the functional importance of ILC1 in the context of an intact adaptive immune response has been controversial. In this report we demonstrate that induced depletion of T-bet using a Rosa26-Cre-ERT2 model resulted in the loss of intestinal ILC1, pointing to a post-developmental requirement of T-bet expression for these cells. In contrast, neither colonic lamina propria (cLP) ILC2 nor cLP ILC3 abundance were altered upon induced deletion of T-bet. Mechanistically, we report that STAT1 or STAT4 are not required for intestinal ILC1 development and maintenance. Mice with induced deletion of T-bet and subsequent loss of ILC1 were protected from the induction of severe colitis in vivo. Hence, this study provides support for the clinical development of an IBD treatment based on ILC1 depletion via targeting T-bet or its downstream transcriptional targets.


Assuntos
Mucosa Intestinal/imunologia , Linfócitos/imunologia , Proteínas com Domínio T/imunologia , Animais , Citrobacter rodentium , Colite/induzido quimicamente , Colite/imunologia , Sulfato de Dextrana , Infecções por Enterobacteriaceae/imunologia , Feminino , Imunidade Inata , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/imunologia , Tamoxifeno/farmacologia , Trichinella spiralis , Triquinelose/imunologia
17.
Sci Immunol ; 6(57)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674321

RESUMO

Innate lymphoid cells (ILCs) are critical mediators of immunological and physiological responses at mucosal barrier sites. Whereas neurotransmitters can stimulate ILCs, the synthesis of small-molecule neurotransmitters by these cells has only recently been appreciated. Group 2 ILCs (ILC2s) are shown here to synthesize and release acetylcholine (ACh) during parasitic nematode infection. The cholinergic phenotype of pulmonary ILC2s was associated with their activation state, could be induced by in vivo exposure to extracts of Alternaria alternata or the alarmin cytokines interleukin-33 (IL-33) and IL-25, and was augmented by IL-2 in vitro. Genetic disruption of ACh synthesis by murine ILC2s resulted in increased parasite burdens, lower numbers of ILC2s, and reduced lung and gut barrier responses to Nippostrongylus brasiliensis infection. These data demonstrate a functional role for ILC2-derived ACh in the expansion of ILC2s for maximal induction of type 2 immunity.


Assuntos
Acetilcolina/biossíntese , Helmintíase/imunologia , Helmintos/imunologia , Imunidade Inata , Imunidade nas Mucosas , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Expressão Gênica , Helmintíase/parasitologia , Interações Hospedeiro-Parasita/imunologia , Imuno-Histoquímica , Imunofenotipagem , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Especificidade de Órgãos/imunologia
18.
J Clin Invest ; 129(3): 1257-1271, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30741720

RESUMO

Tregs play a fundamental role in immune tolerance via control of self-reactive effector T cells (Teffs). This function is dependent on maintenance of a high intracellular cAMP concentration. A number of microRNAs are implicated in the maintenance of Tregs. In this study, we demonstrate that peripheral immune tolerance is critically dependent on posttranscriptional repression of the cAMP-hydrolyzing enzyme phosphodiesterase-3b (Pde3b) by microRNA-142-5p (miR-142-5p). In this manner, miR-142-5p acts as an immunometabolic regulator of intracellular cAMP, controlling Treg suppressive function. Mir142 was associated with a super enhancer bound by the Treg lineage-determining transcription factor forkhead box P3 (FOXP3), and Treg-specific deletion of miR-142 in mice (TregΔ142) resulted in spontaneous, lethal, multisystem autoimmunity, despite preserved numbers of phenotypically normal Tregs. Pharmacological inhibition and genetic ablation of PDE3B prevented autoimmune disease and reversed the impaired suppressive function of Tregs in TregΔ142 animals. These findings reveal a critical molecular switch, specifying Treg function through the modulation of a highly conserved, cell-intrinsic metabolic pathway. Modulation of this pathway has direct relevance to the pathogenesis and treatment of autoimmunity and cancer.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Tolerância Imunológica , MicroRNAs/imunologia , Sistemas do Segundo Mensageiro/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , AMP Cíclico/genética , AMP Cíclico/imunologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Regulação Enzimológica da Expressão Gênica/genética , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Sistemas do Segundo Mensageiro/genética , Linfócitos T Reguladores/patologia
19.
PLoS One ; 11(8): e0161885, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560829

RESUMO

Respiratory Syncytial Virus (RSV) is a major pathogen causing low respiratory tract disease (bronchiolitis), primarily in infants. Helminthic infections may alter host immune responses to both helminths and to unrelated immune triggers. For example, we have previously shown that filarial cystatin (AvCystatin/Av17) ameliorates allergic airway inflammation. However, helminthic immunomodulators have so far not been tested in virus-induced disease. We now report that AvCystatin prevents Th2-based immunopathology in vaccine-enhanced RSV lung inflammation, a murine model for bronchiolitis. AvCystatin ablated eosinophil influx, reducing both weight loss and neutrophil recruitment without impairing anti-viral immune responses. AvCystatin also protected mice from excessive inflammation following primary RSV infection, significantly reducing neutrophil influx and cytokine production in the airways. Interestingly, we found that AvCystatin induced an influx of CD4+ FoxP3+ interleukin-10-producing T cells in the airway and lungs, correlating with immunoprotection, and the corresponding cells could also be induced by adoptive transfer of AvCystatin-primed F4/80+ macrophages. Thus, AvCystatin ameliorates enhanced RSV pathology without increasing susceptibility to, or persistence of, viral infection and warrants further investigation as a possible therapy for virus-induced airway disease.


Assuntos
Cistatinas/imunologia , Proteínas de Helminto/imunologia , Inflamação/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Linfócitos T Reguladores/imunologia , Animais , Bronquiolite/complicações , Bronquiolite/imunologia , Bronquiolite/prevenção & controle , Linhagem Celular Tumoral , Cistatinas/farmacologia , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Helminto/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Inflamação/complicações , Inflamação/prevenção & controle , Interleucina-10/imunologia , Interleucina-10/metabolismo , Camundongos , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/fisiologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA