Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Brain ; 146(1): 149-166, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298632

RESUMO

Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Huntington/genética , Astrócitos/metabolismo , Proteostase , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
2.
Cell Mol Life Sci ; 80(6): 150, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184603

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. Neurofilament (NF) level in patient' fluids have recently emerged as the prime biomarker of ALS disease progression, while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF accumulations could lead to MN degeneration remains unknown. To assess NF accumulations and study the impact on MNs, we compared MNs derived from induced pluripotent stem cells (iPSC) of patients carrying mutations in C9orf72, SOD1 and TARDBP genes, the three main ALS genetic causes. We show that in all mutant MNs, light NF (NF-L) chains rapidly accumulate in MN soma, while the phosphorylated heavy/medium NF (pNF-M/H) chains pile up in axonal proximal regions of only C9orf72 and SOD1 MNs. Excitability abnormalities were also only observed in these latter MNs. We demonstrate that the integrity of the MN axonal initial segment (AIS), the region of action potential initiation and responsible for maintaining axonal integrity, is impaired in the presence of pNF-M/H accumulations in C9orf72 and SOD1 MNs. We establish a strong correlation between these pNF-M/H accumulations, an AIS distal shift, increased axonal calibers and modified repartition of sodium channels. The results expand our understanding of how NF accumulation could dysregulate components of the axonal cytoskeleton and disrupt MN homeostasis. With recent cumulative evidence that AIS alterations are implicated in different brain diseases, preserving AIS integrity could have important therapeutic implications for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Filamentos Intermediários , Superóxido Dismutase-1/genética , Proteína C9orf72/genética , Neurônios Motores/patologia
3.
Nucleic Acids Res ; 50(22): 12979-12996, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533443

RESUMO

Aggregation of the microtubule-associated protein tau characterizes tauopathies, including Alzheimer's disease and frontotemporal lobar degeneration (FTLD-Tau). Gene expression regulation of tau is complex and incompletely understood. Here we report that the human tau gene (MAPT) generates two circular RNAs (circRNAs) through backsplicing of exon 12 to either exon 7 (12→7 circRNA) or exon 10 (12→10 circRNA). Both circRNAs lack stop codons. The 12→7 circRNA contains one start codon and is translated in a rolling circle, generating a protein consisting of multimers of the microtubule-binding repeats R1-R4. For the 12→10 circRNA, a start codon can be introduced by two FTLD-Tau mutations, generating a protein consisting of multimers of the microtubule-binding repeats R2-R4, suggesting that mutations causing FTLD may act in part through tau circRNAs. Adenosine to inosine RNA editing dramatically increases translation of circRNAs and, in the 12→10 circRNA, RNA editing generates a translational start codon by changing AUA to AUI. Circular tau proteins self-aggregate and promote aggregation of linear tau proteins. Our data indicate that adenosine to inosine RNA editing initiates translation of human circular tau RNAs, which may contribute to tauopathies.


Assuntos
Tauopatias , Proteínas tau , Humanos , Adenosina/metabolismo , Códon de Iniciação , Inosina/metabolismo , RNA/genética , RNA/metabolismo , Edição de RNA , RNA Circular/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
4.
Cereb Cortex ; 31(11): 5024-5041, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023893

RESUMO

Oligodendrocytes form myelin for central nervous system axons and release factors which signal to neurons during myelination. Here, we ask how oligodendroglial factors influence hippocampal GABAergic neuron physiology. In mixed hippocampal cultures, GABAergic neurons fired action potentials (APs) of short duration and received high frequencies of excitatory synaptic events. In purified neuronal cultures without glial cells, GABAergic neuron excitability increased and the frequency of synaptic events decreased. These effects were largely reversed by adding oligodendrocyte conditioned medium (OCM). We compared the transcriptomic signature with the electrophysiological phenotype of single neurons in these three culture conditions. Genes expressed by single pyramidal or GABAergic neurons largely conformed to expected cell-type specific patterns. Multiple genes of GABAergic neurons were significantly downregulated by the transition from mixed cultures containing glial cells to purified neuronal cultures. Levels of these genes were restored by the addition of OCM to purified cultures. Clustering genes with similar changes in expression between different culture conditions revealed processes affected by oligodendroglial factors. Enriched genes are linked to roles in synapse assembly, AP generation, and transmembrane ion transport, including of zinc. These results provide new insight into the molecular targets by which oligodendrocytes influence neuron excitability and synaptic function.


Assuntos
Neurônios GABAérgicos , Transcriptoma , Células Cultivadas , Neurônios GABAérgicos/fisiologia , Hipocampo/metabolismo , Neuroglia/fisiologia , Oligodendroglia/fisiologia
5.
J Neurol Neurosurg Psychiatry ; 92(5): 485-493, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33239440

RESUMO

OBJECTIVE: To identify potential biomarkers of preclinical and clinical progression in chromosome 9 open reading frame 72 gene (C9orf72)-associated disease by assessing the expression levels of plasma microRNAs (miRNAs) in C9orf72 patients and presymptomatic carriers. METHODS: The PREV-DEMALS study is a prospective study including 22 C9orf72 patients, 45 presymptomatic C9orf72 mutation carriers and 43 controls. We assessed the expression levels of 2576 miRNAs, among which 589 were above noise level, in plasma samples of all participants using RNA sequencing. The expression levels of the differentially expressed miRNAs between patients, presymptomatic carriers and controls were further used to build logistic regression classifiers. RESULTS: Four miRNAs were differentially expressed between patients and controls: miR-34a-5p and miR-345-5p were overexpressed, while miR-200c-3p and miR-10a-3p were underexpressed in patients. MiR-34a-5p was also overexpressed in presymptomatic carriers compared with healthy controls, suggesting that miR-34a-5p expression is deregulated in cases with C9orf72 mutation. Moreover, miR-345-5p was also overexpressed in patients compared with presymptomatic carriers, which supports the correlation of miR-345-5p expression with the progression of C9orf72-associated disease. Together, miR-200c-3p and miR-10a-3p underexpression might be associated with full-blown disease. Four presymptomatic subjects in transitional/prodromal stage, close to the disease conversion, exhibited a stronger similarity with the expression levels of patients. CONCLUSIONS: We identified a signature of four miRNAs differentially expressed in plasma between clinical conditions that have potential to represent progression biomarkers for C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. This study suggests that dysregulation of miRNAs is dynamically altered throughout neurodegenerative diseases progression, and can be detectable even long before clinical onset. TRIAL REGISTRATION NUMBER: NCT02590276.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Demência Frontotemporal/metabolismo , MicroRNAs/sangue , Adulto , Idoso , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/genética , Biomarcadores/sangue , Progressão da Doença , Feminino , Demência Frontotemporal/sangue , Demência Frontotemporal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Sequenciamento do Exoma
6.
J Clin Invest ; 134(15)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842935

RESUMO

Proliferative glomerulonephritis is a severe condition that often leads to kidney failure. There is a significant lack of effective treatment for these disorders. Here, following the identification of a somatic PIK3CA gain-of-function mutation in podocytes of a patient, we demonstrate using multiple genetically engineered mouse models, single-cell RNA sequencing, and spatial transcriptomics the crucial role played by this pathway for proliferative glomerulonephritis development by promoting podocyte proliferation, dedifferentiation, and inflammation. Additionally, we show that alpelisib, a PI3Kα inhibitor, improves glomerular lesions and kidney function in different mouse models of proliferative glomerulonephritis and lupus nephritis by targeting podocytes. Surprisingly, we determined that pharmacological inhibition of PI3Kα affects B and T lymphocyte populations in lupus nephritis mouse models, with a decrease in the production of proinflammatory cytokines, autoantibodies, and glomerular complement deposition, which are all characteristic features of PI3Kδ inhibition, the primary PI3K isoform expressed in lymphocytes. Importantly, PI3Kα inhibition does not impact lymphocyte function under normal conditions. These findings were then confirmed in human lymphocytes isolated from patients with active lupus nephritis. In conclusion, we demonstrate the major role played by PI3Kα in proliferative glomerulonephritis and show that in this condition, alpelisib acts on both podocytes and the immune system.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Modelos Animais de Doenças , Nefrite Lúpica , Podócitos , Animais , Feminino , Humanos , Camundongos , Linfócitos B/imunologia , Linfócitos B/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Glomerulonefrite/patologia , Glomerulonefrite/imunologia , Glomerulonefrite/genética , Glomerulonefrite/enzimologia , Glomerulonefrite/tratamento farmacológico , Nefrite Lúpica/patologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/genética , Nefrite Lúpica/enzimologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Podócitos/patologia , Podócitos/imunologia , Podócitos/metabolismo , Linfócitos T/imunologia , Linfócitos T/patologia , Tiazóis
7.
Front Mol Neurosci ; 16: 1141079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266374

RESUMO

Introduction: The molecular changes leading to Alzheimer's disease (AD) progression are poorly understood. A decisive factor in the disease occurs when neurofibrillary tangles (NFT) composed of microtubule associated protein tau (MAPT) form in the entorhinal cortex and then spread throughout the brain. Methods: We therefore determined mRNA and circular RNA changes during AD progression, comparing Braak NFT stages I-VI. Total RNA was isolated from human brain (entorhinal and frontotemporal cortex). Poly(A)+ RNA was subjected to Nanopore sequencing, and total RNA was analyzed by standard Illumina sequencing. Circular RNAs were sequenced from RNase R treated and rRNA depleted total RNA. The sequences were analyzed using different bioinformatic tools, and expression constructs for circRNAs were analyzed in transfection experiments. Results: We detected 11,873 circRNAs of which 276 correlated with Braak NFT stages. Adenosine to inosine RNA editing increased about threefold in circRNAs during AD progression. Importantly, this correlation cannot be detected with mRNAs. CircMAN2A1 expression correlated with AD progression and transfection experiments indicated that RNA editing promoted its translation using start codons out of frame with linear mRNAs, which generates novel proteins. Discussion: Thus, we identified novel regulated retained introns that correlate with NFT Braak stages and provide evidence for a role of translated circRNAs in AD development.

8.
Brain Struct Funct ; 228(2): 475-492, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36380034

RESUMO

Although great efforts to characterize the embryonic phase of brain microvascular system development have been made, its postnatal maturation has barely been described. Here, we compared the molecular and functional properties of brain vascular cells on postnatal day (P)5 vs. P15, via a transcriptomic analysis of purified mouse cortical microvessels (MVs) and the identification of vascular-cell-type-specific or -preferentially expressed transcripts. We found that endothelial cells (EC), vascular smooth muscle cells (VSMC) and fibroblasts (FB) follow specific molecular maturation programs over this time period. Focusing on VSMCs, we showed that the arteriolar VSMC network expands and becomes contractile resulting in a greater cerebral blood flow (CBF), with heterogenous developmental trajectories within cortical regions. Samples of the human brain cortex showed the same postnatal maturation process. Thus, the postnatal phase is a critical period during which arteriolar VSMC contractility required for vessel tone and brain perfusion is acquired and mature.


Assuntos
Células Endoteliais , Músculo Liso Vascular , Humanos , Camundongos , Animais , Músculo Liso Vascular/fisiologia , Encéfalo/irrigação sanguínea , Contração Muscular
9.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34495298

RESUMO

Cholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC. Here, we hypothesized that PBC might favor CCA immunosurveillance. In preclinical murine models of cholangitis challenged with syngeneic CCA, PBC (but not PSC) reduced the frequency of CCA development and delayed tumor growth kinetics. This PBC-related effect appeared specific to CCA as it was not observed against other cancers, including hepatocellular carcinoma. The protective effect of PBC was relying on type 1 and type 2 T cell responses and, to a lesser extent, on B cells. Single-cell TCR/RNA sequencing revealed the existence of TCR clonotypes shared between the liver and CCA tumor of a PBC host. Altogether, these results evidence a mechanistic overlapping between autoimmunity and cancer immunosurveillance in the biliary tract.


Assuntos
Autoimunidade , Neoplasias dos Ductos Biliares/imunologia , Colangiocarcinoma/imunologia , Colangite/imunologia , Animais , Neoplasias dos Ductos Biliares/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Colangite/patologia , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fígado/imunologia , Fígado/patologia , Camundongos Endogâmicos C57BL , Monitorização Imunológica , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia
10.
Biol Methods Protoc ; 4(1): bpz006, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32395624

RESUMO

microRNAs are small non-coding RNAs gaining interest for their potential roles as reliable biomarkers for the diagnosis and therapeutics of numerous pathologies, ranging from cancer to neurodegenerative or psychiatric disorders. Indeed, microRNAs are present in various accessible biofluids, including peripheral blood, and specific dysregulation of their expression may be associated with these different pathological conditions. microRNAs can be isolated from plasma or serum for sequencing with commercial kits. However, these two biofluids might exhibit some differences in their microRNA contents, due notably to the coagulation process occurring during serum collection. It remains unclear from previous studies and commercial recommendations which blood fraction is preferable. Because of the small amount of circulating microRNAs in a given blood volume, this question appears crucial for qualitative and quantitative optimization of microRNA profiling, especially in animal models used for investigating the pathophysiological relevancy of this approach. We therefore evaluated the efficiency of RNA isolation and microRNA levels from plasma and sera isolated from rats and humans, with a widely used extraction kit (QIAGEN miRNeasy), and assessed microRNA quality and quantity with high-throughput sequencing. Fewer reads with length corresponding to non-miRNAs sequences were observed in plasma than in serum, both from rats and humans. Moreover, rat plasma produced twice as many aligned reads compared to sera, as well as more aligned reads corresponding to microRNAs (84.6% against 38.7%), differences that were not find in human samples. Our results, therefore, clearly indicate that plasma should be preferred for miRNA investigations, particularly for translational studies.

11.
Stem Cell Reports ; 11(5): 1075-1091, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30449320

RESUMO

Fanconi anemia (FA) causes bone marrow failure early during childhood, and recent studies indicate that a hematopoietic defect could begin in utero. We performed a unique kinetics study of hematopoiesis in Fancg-/- mouse embryos, between the early embryonic day 11.5 (E11.5) to E12.5 developmental window (when the highest level of hematopoietic stem cells [HSC] amplification takes place) and E14.5. This study reveals a deep HSC defect with exhaustion of proliferative and self-renewal capacities very early during development, together with severe FA clinical and biological manifestations, which are mitigated at E14.5 due to compensatory mechanisms that help to ensure survival of Fancg-/- embryos. It also reports that a deep HSC defect is also observed during human FA development, and that human FA fetal liver (FL) HSCs present a transcriptome profile similar to that of mouse E12.5 Fancg-/- FL HSCs. Altogether, our results highlight that early mouse FL could represent a good alternative model for studying Fanconi pathology.


Assuntos
Desenvolvimento Embrionário , Anemia de Fanconi/patologia , Células-Tronco Hematopoéticas/patologia , Animais , Apoptose , Ciclo Celular , Dano ao DNA , Embrião de Mamíferos/patologia , Eritrócitos/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação G da Anemia de Fanconi/metabolismo , Feminino , Ontologia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fígado/embriologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Placenta/metabolismo , Gravidez , Transcriptoma/genética
12.
Int J Dev Biol ; 59(7-9): 407-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26679953

RESUMO

The characteristics of a cellular calcium signal (calcium signature) are determined, at least partly, by the expression of a subset of genes encoding proteins involved in calcium entry, calcium uptake and calcium modulation. Our aim in the present work was to characterize the set of genes involved in calcium signal generation that are differentially expressed in normal brain tissues versus brain tumor and/or glioma stem cells. Public datasets were analyzed according to a four step methodology consisting of: 1. detecting the outliers by using principal component analysis of the whole transcriptome; 2. building a calcium toolbox composed of 260 genes involved in the generation and modulation of the calcium signal; 3. analyzing the calcium toolbox transcriptome of different human brain areas and 4. detecting genes from the calcium toolbox preferentially expressed in tumor tissues or tumor cells compared to normal brain tissues. Our approach was validated on normal brain tissue. Tumor sample analysis allowed us to disclose a set of eighteen genes characteristic of glioblastoma tissues or glioma stem cells. Interpreting the set of genes highlighted in the study led us to propose that i) the mechanism of store operated calcium entry is strongly perturbed in cancer cells and tissues, ii) the process of calcium reuptake into mitochondria is more important in cancer cells and tissues than in their normal counterparts and iii) these two mechanisms may be coupled in at least one subgroup of the glioblastoma stem cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Sinalização do Cálcio/genética , Cálcio/metabolismo , Glioblastoma/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA