Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(9): 4741-4755, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32198885

RESUMO

Androgen receptor (AR) action is a hallmark of prostate cancer (PCa) with androgen deprivation being standard therapy. Yet, resistance arises and aberrant AR signaling promotes disease. We sought compounds that inhibited genes driving cancer but not normal growth and hypothesized that genes with consensus androgen response elements (cAREs) drive proliferation but genes with selective elements (sAREs) promote differentiation. In a high-throughput promoter-dependent drug screen, doxorubicin (dox) exhibited this ability, acting on DNA rather than AR. This dox effect was observed at low doses for multiple AR target genes in multiple PCa cell lines and also occurred in vivo. Transcriptomic analyses revealed that low dox downregulated cell cycle genes while high dox upregulated DNA damage response genes. In chromatin immunoprecipitation (ChIP) assays with low dox, AR binding to sARE-containing enhancers increased, whereas AR was lost from cAREs. Further, ChIP-seq analysis revealed a subset of genes for which AR binding in low dox increased at pre-existing sites that included sites for prostate-specific factors such as FOXA1. AR dependence on cofactors at sAREs may be the basis for differential modulation by dox that preserves expression of genes for survival but not cancer progression. Repurposing of dox may provide unique opportunities for PCa treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Elementos de Resposta , Animais , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Doxorrubicina/uso terapêutico , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos SCID , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , RNA-Seq , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Neuroimage ; 226: 117594, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248253

RESUMO

The androgen receptor (AR) is known for masculinization of behavior and brain. To better understand the role that AR plays, mice bearing humanized Ar genes with varying lengths of a polymorphic N-terminal glutamine (Q) tract were created (Albertelli et al., 2006). The length of the Q tract is inversely proporitional to AR activity. Biological studies of the Q tract length may also provide a window into potential AR contributions to sex-biases in disease risk. Here we take a multi-pronged approach to characterizing AR signaling effects on brain and behavior in mice using the humanized Ar Q tract model. We first map effects of Q tract length on regional brain anatomy, and consider if these are modified by gonadal sex. We then test the notion that spatial patterns of anatomical variation related to Q tract length could be organized by intrinsic spatiotemporal patterning of AR gene expression in the mouse brain. Finally, we test influences of Q tract length on four behavioral tests.Altering Q tract length led to neuroanatomical differences in a non-linear dosage-dependent fashion. Gene expression analyses indicated that adult neu- roanatomical changes due to Q tract length are only associated with neurode- velopment (as opposed to adulthood). No significant effect of Q tract length was found on the behavior of the three mouse models. These results indicate that AR activity differentially mediates neuroanatomy and behavior, that AR activity alone does not mediate sex differences, and that neurodevelopmen- tal processes are associated with spatial patterns of volume changes due to Q tract length in adulthood. They also indicate that androgen sensitivity in adulthood is not likely to lead to autism-related behaviors or neuroanatomy, although neurodevelopmental processes may play a role earlier. Further study into sex differences, development, other behaviors, and other sex-specific mech- anisms are needed to better understand AR sensitivity, neurodevelopmental disorders, and the sex difference in their prevalence.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/anatomia & histologia , Receptores Androgênicos/genética , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , Camundongos , Polimorfismo Genético
3.
Acta Neuropathol ; 140(1): 63-80, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32306066

RESUMO

Polyglutamine (polyQ) tract expansion leads to proteotoxic misfolding and drives a family of nine diseases. We study spinal and bulbar muscular atrophy (SBMA), a progressive degenerative disorder of the neuromuscular system caused by the polyQ androgen receptor (AR). Using a knock-in mouse model of SBMA, AR113Q mice, we show that E3 ubiquitin ligases which are a hallmark of the canonical muscle atrophy machinery are not induced in AR113Q muscle. Similarly, we find no evidence to suggest dysfunction of signaling pathways that trigger muscle hypertrophy or impairment of the muscle stem cell niche. Instead, we find that skeletal muscle atrophy is characterized by diminished function of the transcriptional regulator Myocyte Enhancer Factor 2 (MEF2), a regulator of myofiber homeostasis. Decreased expression of MEF2 target genes is age- and glutamine tract length-dependent, occurs due to polyQ AR proteotoxicity, and is associated with sequestration of MEF2 into intranuclear inclusions in muscle. Skeletal muscle from R6/2 mice, a model of Huntington disease which develops progressive atrophy, also sequesters MEF2 into inclusions and displays age-dependent loss of MEF2 target genes. Similarly, SBMA patient muscle shows loss of MEF2 target gene expression, and restoring MEF2 activity in AR113Q muscle rescues fiber size and MEF2-regulated gene expression. This work establishes MEF2 impairment as a novel mechanism of skeletal muscle atrophy downstream of toxic polyglutamine proteins and as a therapeutic target for muscle atrophy in these disorders.


Assuntos
Atrofia Bulboespinal Ligada ao X/metabolismo , Atrofia Bulboespinal Ligada ao X/patologia , Fatores de Transcrição MEF2/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Animais , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Peptídeos
4.
J Biol Chem ; 291(49): 25516-25528, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27780869

RESUMO

URI (unconventional prefoldin RPB5 interactor protein) is an unconventional prefoldin, RNA polymerase II interactor that functions as a transcriptional repressor and is part of a larger nuclear protein complex. The components of this complex and the mechanism of transcriptional repression have not been characterized. Here we show that KAP1 (KRAB-associated protein 1) and the protein phosphatase PP2A interact with URI. Mechanistically, we show that KAP1 phosphorylation is decreased following recruitment of PP2A by URI. We functionally characterize the novel URI-KAP1-PP2A complex, demonstrating a role of URI in retrotransposon repression, a key function previously demonstrated for the KAP1-SETDB1 complex. Microarray analysis of annotated transposons revealed a selective increase in the transcription of LINE-1 and L1PA2 retroelements upon knockdown of URI. These data unveil a new nuclear function of URI and identify a novel post-transcriptional regulation of KAP1 protein that may have important implications in reactivation of transposable elements in prostate cancer cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Complexos Multiproteicos/genética , Proteínas de Neoplasias/genética , Fosforilação/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteína Fosfatase 2/genética , Proteínas Repressoras/genética , Retroelementos , Proteína 28 com Motivo Tripartido
5.
Neuroimage ; 163: 220-230, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28882630

RESUMO

MRI is a powerful modality to detect neuroanatomical differences that result from mutations and treatments. Knowing which genes drive these differences is important in understanding etiology, but candidate genes are often difficult to identify. We tested whether spatial gene expression data from the Allen Brain Institute can be used to inform us about genes that cause neuroanatomical differences. For many single-gene-mutation mouse models, we found that affected neuroanatomy was not strongly associated with the spatial expression of the altered gene and there are specific caveats for each model. However, among models with significant neuroanatomical differences from their wildtype controls, the mutated genes had preferential spatial expression in affected neuroanatomy. In mice exposed to environmental enrichment, candidate genes could be identified by a genome-wide search for genes with preferential spatial expression in the altered neuroanatomical regions. These candidates have functions related to learning and plasticity. We demonstrate that spatial gene expression of single-genes is a poor predictor of altered neuroanatomy, but altered neuroanatomy can identify candidate genes responsible for neuroanatomical phenotypes.


Assuntos
Encéfalo/anatomia & histologia , Animais , Modelos Animais de Doenças , Estudos de Associação Genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo
6.
Hum Mol Genet ; 23(5): 1376-86, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24150846

RESUMO

Spinobulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract in exon 1 of the androgen receptor (AR) gene. SBMA demonstrates androgen-dependent toxicity due to unfolding and aggregation of the mutant protein. There are currently no disease-modifying therapies, but of increasing interest for therapeutic targeting is autophagy, a highly conserved cellular process mediating protein quality control. We have previously shown that genetic manipulations inhibiting autophagy diminish skeletal muscle atrophy and extend the lifespan of AR113Q knock-in mice. In contrast, manipulations inducing autophagy worsen muscle atrophy, suggesting that chronic, aberrant upregulation of autophagy contributes to pathogenesis. Since the degree to which autophagy is altered in SBMA and the mechanisms responsible for such alterations are incompletely defined, we sought to delineate autophagic status in SBMA using both cellular and mouse models. Here, we confirm that autophagy is induced in cellular and knock-in mouse models of SBMA and show that the transcription factors transcription factor EB (TFEB) and ZKSCAN3 operate in opposing roles to underlie these changes. We demonstrate upregulation of TFEB target genes in skeletal muscle from AR113Q male mice and SBMA patients. Furthermore, we observe a greater response in AR113Q mice to physiological stimulation of autophagy by both nutrient starvation and exercise. Taken together, our results indicate that transcriptional signaling contributes to autophagic dysregulation and provides a mechanistic framework for the pathologic increase of autophagic responsiveness in SBMA.


Assuntos
Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Transtornos Musculares Atróficos/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Transtornos Musculares Atróficos/metabolismo , Peptídeos/genética , Condicionamento Físico Animal , Receptores Androgênicos/genética
7.
Acta Neuropathol ; 132(1): 127-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26971100

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The mechanism by which expansion of polyglutamine in AR causes muscle atrophy is unknown. Here, we investigated pathological pathways underlying muscle atrophy in SBMA knock-in mice and patients. We show that glycolytic muscles were more severely affected than oxidative muscles in SBMA knock-in mice. Muscle atrophy was associated with early-onset, progressive glycolytic-to-oxidative fiber-type switch. Whole genome microarray and untargeted lipidomic analyses revealed enhanced lipid metabolism and impaired glycolysis selectively in muscle. These metabolic changes occurred before denervation and were associated with a concurrent enhancement of mechanistic target of rapamycin (mTOR) signaling, which induced peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α) expression. At later stages of disease, we detected mitochondrial membrane depolarization, enhanced transcription factor EB (TFEB) expression and autophagy, and mTOR-induced protein synthesis. Several of these abnormalities were detected in the muscle of SBMA patients. Feeding knock-in mice a high-fat diet (HFD) restored mTOR activation, decreased the expression of PGC1α, TFEB, and genes involved in oxidative metabolism, reduced mitochondrial abnormalities, ameliorated muscle pathology, and extended survival. These findings show early-onset and intrinsic metabolic alterations in SBMA muscle and link lipid/glucose metabolism to pathogenesis. Moreover, our results highlight an HFD regime as a promising approach to support SBMA patients.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glicólise , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Atrofia/metabolismo , Atrofia/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Glicólise/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Transgênicos , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/patologia , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Distribuição Aleatória , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais
8.
PLoS Genet ; 7(10): e1002321, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22022281

RESUMO

Altered protein homeostasis underlies degenerative diseases triggered by misfolded proteins, including spinal and bulbar muscular atrophy (SBMA), a neuromuscular disorder caused by a CAG/glutamine expansion in the androgen receptor. Here we show that the unfolded protein response (UPR), an ER protein quality control pathway, is induced in skeletal muscle from SBMA patients, AR113Q knock-in male mice, and surgically denervated wild-type mice. To probe the consequence of UPR induction, we deleted CHOP (C/EBP homologous protein), a transcription factor induced following ER stress. CHOP deficiency accentuated atrophy in both AR113Q and surgically denervated muscle through activation of macroautophagy, a lysosomal protein quality control pathway. Conversely, impaired autophagy due to Beclin-1 haploinsufficiency decreased muscle wasting and extended lifespan of AR113Q males, producing a significant and unexpected amelioration of the disease phenotype. Our findings highlight critical cross-talk between the UPR and macroautophagy, and they indicate that autophagy activation accentuates aspects of the SBMA phenotype.


Assuntos
Autofagia/genética , Atrofia Bulboespinal Ligada ao X/genética , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Denervação , Modelos Animais de Doenças , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Técnicas de Introdução de Genes , Haploinsuficiência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Isquiático/cirurgia
9.
Biol Reprod ; 82(4): 662-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20042539

RESUMO

Krüppel-associated box-zinc finger proteins (KRAB-ZFPs) are the largest class of transcriptional regulators in mammals, yet few have been assigned biological roles. Cloning the genes underlying the regulator of sex-limitation (rsl) phenotype, in which the normally male-specific sex-limited protein (SLP) is expressed in female mice, identified two KRAB-ZFPs, Rsl1 and Rsl2, as influencing sexually dimorphic liver gene expression. Combined absence of both repressors in rsl mice leads to increased expression in female liver of major urinary proteins (MUPs) and certain enzymes of steroid metabolism, as well as SLP. We hypothesized that this altered gene expression might affect reproductive physiology in rsl females. Urinary MUP (uMUP) concentration varied with the estrous cycle in both wt and rsl females but was consistently higher in rsl urine. A behavioral odor test revealed that wild-type (wt) males preferred rsl to wt females, possibly due to elevated uMUPs providing greater pheromone presentation. To ascribe activity to Rsl1, Rsl2, or both, the genes were individually expressed as liver-specific transgenes. RSL2 overexpression accentuated uMUP fluctuations across the estrous cycle, whereas RSL1 overexpression did not. In addition, puberty onset, as indicated by vaginal opening (VO), occurred 2 days earlier in rsl females, and excess RSL2, but not RSL1, restored VO timing to wt. Hence, transcriptional repression by RSL in liver modifies female mouse reproduction via targets that likely impact both hormonal and pheromonal cues. The large and rapidly diversifying KRAB-ZFP family may modulate biological processes, including reproduction, to confer individual differences that may isolate populations and ultimately lead to speciation.


Assuntos
Regulação da Expressão Gênica , Proteínas Repressoras/fisiologia , Reprodução/genética , Animais , Biomarcadores/metabolismo , Ciclo Estral/genética , Ciclo Estral/metabolismo , Ciclo Estral/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Feromônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores Sexuais , Maturidade Sexual/genética , Dedos de Zinco
10.
Oncogene ; 39(16): 3276-3291, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32089544

RESUMO

Polyglutamine (polyQ) tract polymorphism within the human androgen receptor (AR) shows population heterogeneity. African American men possess short polyQ tracts significantly more frequently than Caucasian American men. The length of polyQ tracts is inversely correlated with the risk of prostate cancer, age of onset, and aggressiveness at diagnosis. Aberrant activation of Wnt signaling also reveals frequently in advanced prostate cancer, and an enrichment of androgen and Wnt signaling activation has been observed in African American patients. Here, we assessed aberrant expression of AR bearing different polyQ tracts and stabilized ß-catenin in prostate tumorigenesis using newly generated mouse models. We observed an early onset oncogenic transformation, accelerated tumor cell growth, and aggressive tumor phenotypes in the compound mice bearing short polyQ tract AR and stabilized ß-catenin. RNA sequencing analysis showed a robust enrichment of Myc-regulated downstream genes in tumor samples bearing short polyQ AR versus those with longer polyQ tract AR. Upstream regulator analysis further identified Myc as the top candidate of transcriptional regulators in tumor cells from the above mouse samples with short polyQ tract AR and ß-catenin. Chromatin immunoprecipitation analyses revealed increased recruitment of ß-catenin and AR on the c-Myc gene regulatory locus in the tumor tissues expressing stabilized ß-catenin and shorter polyQ tract AR. These data demonstrate a promotional role of aberrant activation of Wnt/ß-catenin in combination with short polyQ AR expression in prostate tumorigenesis and suggest a potential mechanism underlying aggressive prostatic tumor development, which has been frequently observed in African American patients.


Assuntos
Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Androgênicos/genética , beta Catenina/genética , Negro ou Afro-Americano/genética , Animais , Carcinogênese/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Peptídeos/genética , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Análise de Sequência de RNA , Via de Sinalização Wnt/genética
11.
Nat Neurosci ; 23(9): 1102-1110, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661395

RESUMO

Cerebellar dysfunction has been demonstrated in autism spectrum disorders (ASDs); however, the circuits underlying cerebellar contributions to ASD-relevant behaviors remain unknown. In this study, we demonstrated functional connectivity between the cerebellum and the medial prefrontal cortex (mPFC) in mice; showed that the mPFC mediates cerebellum-regulated social and repetitive/inflexible behaviors; and showed disruptions in connectivity between these regions in multiple mouse models of ASD-linked genes and in individuals with ASD. We delineated a circuit from cerebellar cortical areas Right crus 1 (Rcrus1) and posterior vermis through the cerebellar nuclei and ventromedial thalamus and culminating in the mPFC. Modulation of this circuit induced social deficits and repetitive behaviors, whereas activation of Purkinje cells (PCs) in Rcrus1 and posterior vermis improved social preference impairments and repetitive/inflexible behaviors, respectively, in male PC-Tsc1 mutant mice. These data raise the possibility that these circuits might provide neuromodulatory targets for the treatment of ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Cerebelo/fisiopatologia , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Mutantes
12.
Physiol Genomics ; 38(1): 16-28, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19351907

RESUMO

Krüppel-related zinc finger proteins (KRAB-zfps) comprise the largest mammalian transcription factor family, but their specific functions are largely unknown. Two KRAB-zfps, regulator of sex-limitation (Rsl) 1 and Rsl2, repress expression of the mouse sex-limited protein (Slp) gene, the hallmark of Rsl activity, as well as some other male-predominant liver genes. This phenotype suggests Rsl modifies sex-specific transcription. The scope of Rsl control was determined by expression profiling of liver RNA from wild-type (wt), rsl, and transgenic mice with hepatic overexpression of Rsl1 or Rsl2. About 7.5% of the liver transcriptome was Rsl-responsive. More genes in males than females were affected by the loss of Rsl (e.g., in rsl mice), whereas Rsl overexpression altered more transcripts in females than males. Rsl dramatically repressed some female-predominant genes, but most were modestly (1.25- to 2-fold) influenced. In males, most Rsl-responsive genes unexpectedly expressed at lower levels in rsl than wt, suggesting not all are direct targets of Rsl repression. Gene Ontology analysis showed Rsl targets enriched in pathways of cholesterol, steroid, and lipid metabolism, linking Rsl to energy balance. In accord with this, blood glucose levels were less in male rsl than wt mice, and less responsive to fasting and refeeding. rsl mice were also leaner than wt, consistent with their hepatic regulation of phosphoenolpyruvate carboxykinase 1 and stearoyl-Coenzyme A desaturase 1. Altogether, Rsl's effect on sexually dimorphic and metabolically sensitive liver gene expression suggests a role for KRAB-zfps as broad genetic modulators of individual adaptation.


Assuntos
Proteínas de Transporte/fisiologia , Regulação da Expressão Gênica , Fígado/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Dedos de Zinco , Animais , Sequência de Bases , Proteínas de Transporte/genética , Primers do DNA , Feminino , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores Sexuais
13.
J Clin Invest ; 116(10): 2663-72, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16981011

RESUMO

Kennedy disease, a degenerative disorder characterized by androgen-dependent neuromuscular weakness, is caused by a CAG/glutamine tract expansion in the androgen receptor (Ar) gene. We developed a mouse model of Kennedy disease, using gene targeting to convert mouse androgen receptor (AR) to human sequence while introducing 113 glutamines. AR113Q mice developed hormone and glutamine length-dependent neuromuscular weakness characterized by the early occurrence of myopathic and neurogenic skeletal muscle pathology and by the late development of neuronal intranuclear inclusions in spinal neurons. AR113Q males unexpectedly died at 2-4 months. We show that this androgen-dependent death reflects decreased expression of skeletal muscle chloride channel 1 (CLCN1) and the skeletal muscle sodium channel alpha-subunit, resulting in myotonic discharges in skeletal muscle of the lower urinary tract. AR113Q limb muscles show similar myopathic features and express decreased levels of mRNAs encoding neurotrophin-4 and glial cell line-derived neurotrophic factor. These data define an important myopathic contribution to the Kennedy disease phenotype and suggest a role for muscle in non-cell autonomous toxicity of lower motor neurons.


Assuntos
Androgênios/metabolismo , Modelos Animais de Doenças , Músculo Esquelético/patologia , Atrofia Muscular Espinal/patologia , Androgênios/farmacologia , Animais , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Feminino , Expressão Gênica/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Mutação/genética , Miogenina/genética , Canal de Sódio Disparado por Voltagem NAV1.4 , Fatores de Crescimento Neural/genética , Orquiectomia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Colinérgicos/genética , Canais de Sódio/genética , Canais de Sódio/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Análise de Sobrevida , Testículo/patologia , Testosterona/farmacologia
14.
Mol Cancer Res ; 6(11): 1691-701, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19010817

RESUMO

Gain-of-function mutations in the androgen receptor (AR) are found in prostate cancer and are implicated in the failure of hormone therapy. Most studies have emphasized the ligand-binding domain (LBD) where mutations can create promiscuous receptors, but mutations in the NH(2)-terminal transactivation domain have also been found. To assess AR alteration as a mechanism of treatment resistance, a mouse model (h/mAR-TRAMP) was used in which the murine AR coding region is replaced by human sequence and prostate cancer initiated by a transgenic oncogene. Mice received either no treatment, androgen depletion by castration, or treatment with antiandrogens, and 20 AR transcripts were sequenced per end-stage tumor. All tumors expressed several mutant alleles, although most mutations were low frequency. Some mutations that occurred multiple times within the population were differentially located dependent on treatment. Mutations in castrated or antiandrogen-treated mice were widely dispersed but with a prominent cluster in the LBD (amino acids 736-771), whereas changes in intact mice centered near the NH(2)-terminal polymorphic glutamine tract. Functional characterization of selected LBD mutant alleles showed diverse effects on AR activity, with about half of the mutations reducing transactivation in vitro. One receptor, AR-R753Q, behaved in a cell- and promoter-dependent manner, although as a germ-line mutation it causes androgen insensitivity syndrome. This suggests that alleles that are loss of function during development may still activate a subset of AR targets to become gain of function in tumorigenesis. Mutant ARs may thus use multiple mechanisms to evade cancer treatment.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Antineoplásicos/uso terapêutico , Mutação , Orquiectomia , Neoplasias da Próstata/terapia , Receptores Androgênicos/genética , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Introdução de Genes/métodos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Domínios e Motivos de Interação entre Proteínas/genética , Receptores Androgênicos/fisiologia
15.
J Alzheimers Dis ; 14(2): 247-55, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18560135

RESUMO

The androgen receptor (AR) is a ligand-activated transcription factor that is central to androgen-dependent development and diseases. Activity of the receptor is influenced by the length of a CAG/glutamine tract in its N-terminal transactivating domain. Expansions of this tract cause Kennedy disease, a protein aggregation degenerative disorder of motor neurons that occurs only in men, and shorter length tracts have been linked to increased risk of prostate cancer. Here we review recent data from mouse models in which gene targeting was used to humanize the mouse Ar gene and introduce CAG/glutamine tracts of varying lengths. Insertion of an expanded tract encoded by 113 CAG repeats modeled Kennedy disease and revealed an important myopathic contribution to the disease phenotype. Variations in CAG tract length within the range of normal human alleles influenced the onset and progression of prostate cancer when targeted Ar mice were crossed to a transgenic prostate cancer model. This series of mice with different Ar alleles has provided insights into the mechanisms by which variations in the CAG/glutamine tract length influence the occurrence of human disease.


Assuntos
Modelos Animais de Doenças , Marcação de Genes/métodos , Glutamina/genética , Atrofia Muscular Espinal/genética , Receptores Androgênicos/genética , Repetições de Trinucleotídeos/genética , Alelos , Animais , Cruzamentos Genéticos , Predisposição Genética para Doença/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios Motores/patologia , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Atrofia Muscular Espinal/patologia , Fenótipo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Medula Espinal/patologia
16.
J Steroid Biochem Mol Biol ; 108(3-5): 230-6, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17936615

RESUMO

Androgen, acting via the androgen receptor (AR), is central to male development, differentiation and hormone-dependent diseases such as prostate cancer. AR is actively involved in the initiation of prostate cancer, the transition to androgen independence, and many mechanisms of resistance to therapy. To examine genetic variation of AR in cancer, we created mice by germ-line gene targeting in which human AR sequence replaces that of the mouse. Since shorter length of a polymorphic N-terminal glutamine (Q) tract has been linked to prostate cancer risk, we introduced alleles with 12, 21 or 48 Qs to test this association. The three "humanized" AR mouse strains (h/mAR) are normal physiologically, as well as by cellular and molecular criteria, although slight differences are detected in AR target gene expression, correlating inversely with Q tract length. However, distinct allele-dependent differences in tumorigenesis are evident when these mice are crossed to a transgenic prostate cancer model. Remarkably, Q tract variation also differentially impacts disease progression following androgen depletion. This finding emphasizes the importance of AR function in androgen-independent as well as androgen-dependent disease. These mice provide a novel genetic paradigm in which to dissect opposing functions of AR in tumor suppression versus oncogenesis.


Assuntos
Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Sequência de Aminoácidos , Animais , Glutamina/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Peptídeos/química , Peptídeos/genética , Neoplasias da Próstata/metabolismo
17.
J Clin Invest ; 128(8): 3630-3641, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29809168

RESUMO

Skeletal muscle has emerged as a critical, disease-relevant target tissue in spinal and bulbar muscular atrophy, a degenerative disorder of the neuromuscular system caused by a CAG/polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. Here, we used RNA-sequencing (RNA-Seq) to identify pathways that are disrupted in diseased muscle using AR113Q knockin mice. This analysis unexpectedly identified substantially diminished expression of numerous ubiquitin/proteasome pathway genes in AR113Q muscle, encoding approximately 30% of proteasome subunits and 20% of E2 ubiquitin conjugases. These changes were age, hormone, and glutamine length dependent and arose due to a toxic gain of function conferred by the mutation. Moreover, altered gene expression was associated with decreased levels of the proteasome transcription factor NRF1 and its activator DDI2 and resulted in diminished proteasome activity. Ubiquitinated ADRM1 was detected in AR113Q muscle, indicating the occurrence of stalled proteasomes in mutant mice. Finally, diminished expression of Drosophila orthologues of NRF1 or ADRM1 promoted the accumulation of polyQ AR protein and increased toxicity. Collectively, these data indicate that AR113Q muscle develops progressive proteasome dysfunction that leads to the impairment of quality control and the accumulation of polyQ AR protein, key features that contribute to the age-dependent onset and progression of this disorder.


Assuntos
Envelhecimento/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Expansão das Repetições de Trinucleotídeos , Envelhecimento/genética , Envelhecimento/patologia , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Androgênicos/genética
18.
Mol Endocrinol ; 20(6): 1248-60, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16601069

RESUMO

Polymorphism in the length of the N-terminal glutamine (Q) tract in the human androgen receptor (AR) has been implicated in affecting aspects of male health ranging from fertility to cancer. Extreme expansion of the tract underlies Kennedy disease, and in vitro the AR Q tract length correlates inversely with transactivation capacity. However, whether normal variation influences physiology or the etiology of disease has been controversial. To assess directly the functional significance of Q tract variation, we converted the mouse AR to the human sequence by germline gene targeting, introducing alleles with 12, 21, or 48 glutamines. These three "humanized" AR (h/mAR) mouse lines were grossly normal in growth, behavior, fertility, and reproductive tract morphology. Phenotypic analysis revealed traits that varied subtly with Q tract length, including body fat amount and, more notably, seminal vesicle weight. Upon molecular analysis, tissue-specific differences in AR levels and target gene expression were detected between mouse lines. In the prostate, probasin, Nkx3.1, and clusterin mRNAs trended in directions predicted for inverse correlation of Q tract length with AR activation. Remarkably, when crossed with transgenic adenocarcinoma of mouse prostate (TRAMP) mice, striking genotype-dependent differences in prostate cancer initiation and progression were revealed. This link between Q tract length and prostate cancer, likely due to differential activation of AR targets, corroborates human epidemiological studies. This h/mAR allelic series in a homogeneous mouse genetic background allows examination of numerous physiological traits for Q tract influences and provides an animal model to test novel drugs targeted specifically to human AR.


Assuntos
Receptores Androgênicos/genética , Receptores Androgênicos/fisiologia , Alelos , Animais , Sequência de Bases , DNA Recombinante/genética , Feminino , Expressão Gênica , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/etiologia , Peptídeos/química , Peptídeos/genética , Fenótipo , Próstata/anatomia & histologia , Próstata/fisiologia , Neoplasias da Próstata/etiologia , Receptores Androgênicos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Testículo/anatomia & histologia , Testículo/fisiologia
19.
Cancer Res ; 62(17): 4854-9, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12208730

RESUMO

Copper plays an essential role in promoting angiogenesis. Tumors that become angiogenic acquire the ability to enter a phase of rapid growth and exhibit increased metastatic potential, the major cause of morbidity in cancer patients. We report that copper deficiency induced by tetrathiomolybdate (TM) significantly impairs tumor growth and angiogenesis in two animal models of breast cancer: an inflammatory breast cancer xenograft in nude mice and Her2/neu cancer-prone transgenic mice. In vitro, TM decreases the production of five proangiogenic mediators: (a) vascular endothelial growth factor; (b) fibroblast growth factor 2/basic fibroblast growth factor; (c) interleukin (IL)-1alpha; (d) IL-6; and (e) IL-8. In addition, TM inhibits vessel network formation and suppresses nuclear factor (NF)kappaB levels and transcriptional activity. Our study suggests that a major mechanism of the antiangiogenic effect of copper deficiency induced by TM is suppression of NFkappaB, contributing to a global inhibition of NFkappaB-mediated transcription of proangiogenic factors.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/irrigação sanguínea , Cobre/deficiência , Molibdênio/farmacologia , Neovascularização Patológica/tratamento farmacológico , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Divisão Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Genes erbB-2 , Humanos , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/prevenção & controle , Camundongos , Camundongos Nus , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Steroid Biochem Mol Biol ; 156: 17-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26581480

RESUMO

The androgen receptor (AR) mediates the majority of androgen effects on target cells. The DNA cis-regulatory elements that respond to AR share sequence similarity with cis-regulatory elements for glucocorticoid, mineralocorticoid and progesterone receptors (GR, MR and PR, respectively). As a result, many of the current AR screening models are complicated by inaccurate activation of reporters by one of these receptor pathways. Identification of more selective androgen testing systems would be beneficial for clinical, pharmacological and toxicologic screening of AR activators. The present study describes the development of a selective androgen-responsive reporter cell line that expresses AR but does not express GR, MR and PR. CV1 cells were stably transduced to express human AR and an androgen-responsive gaussia luciferase gene. Clonal populations of AR expressing cells were isolated. Quantitative RT-PCR (qPCR) and western analysis confirmed stable integration of AR in the most responsive clonal line which was named 'CV1-ARluc'. Stimulation of CV1AR-luc with androgenic ligands (testosterone and 5α-dihydrotestosterone) for 18h caused an increase in luciferase activity in a dose-dependent manner. Other steroid hormones including aldosterone, cortisol, and progesterone did not stimulate luciferase response. The CV1-ARluc also increased luciferase activity when treated with human serum extracts. In conclusion, the CV1-ARluc cells provide a novel model system for screening of new AR agonists and antagonists and can determine the androgenic activity of human serum samples.


Assuntos
Androgênios/sangue , Androgênios/metabolismo , Técnicas Biossensoriais/métodos , Rim/citologia , Receptores Androgênicos/metabolismo , Adulto , Animais , Feminino , Expressão Gênica , Genes Reporter , Haplorrinos , Humanos , Rim/metabolismo , Luciferases/genética , Luciferases/metabolismo , Masculino , Receptores Androgênicos/genética , Esteroides/metabolismo , Transdução Genética/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA