Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Comput Biol ; 16(10): e1008242, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33001990

RESUMO

As continued COVID-19 disruption looks likely across the world, perhaps until 2021, contingency plans are evolving in case of further disruption in the 2020-2021 academic year. This includes delivering face-to-face programs fully online for at least part of the upcoming academic year for new and continuing cohorts. This temporary pivot will necessitate distance teaching and learning across almost every conceivable pedagogy, from fundamental degrees to professionally accredited ones. Each institution, program, and course will have its own myriad of individualized needs; however, there is a common question that unites us all: how do we provide teaching and assessment to students in a manner that is accessible, fair, equitable, and provides the best learning whilst acknowledging the temporary nature of the pivot? No "one size fits all" solution exists, and many of the choices that need to be made will be far from simple; however, this paper provides a starting point and basic principles to facilitate discussions taking place around the globe by balancing what we know from the pedagogy of online learning with the practicalities imposed by this crisis and any future crises.


Assuntos
Educação a Distância , Betacoronavirus/isolamento & purificação , COVID-19 , Instrução por Computador , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2
2.
J Membr Biol ; 237(2-3): 79-91, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20972559

RESUMO

Although previous studies have provided evidence for the expression of P2X receptors in renal proximal tubule, only one cell line study has provided functional evidence. The current study investigated the pharmacological properties and physiological role of native P2X-like currents in single frog proximal tubule cells using the whole-cell patch-clamp technique. Extracellular ATP activated a cation conductance (P2X(f)) that was also Ca²+-permeable. The agonist sequence for activation was ATP = αß-MeATP > BzATP = 2-MeSATP, and P2X(f) was inhibited by suramin, PPADS and TNP-ATP. Activation of P2X(f) attenuated the rundown of a quinidine-sensitive K+ conductance, suggesting that P2X(f) plays a role in K+ channel regulation. In addition, ATP/ADP apyrase and inhibitors of P2X(f) inhibited regulatory volume decrease (RVD). These data are consistent with the presence of a P2X receptor that plays a role in the regulation of cell volume and K+ channels in frog renal proximal tubule cells.


Assuntos
Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Rim/citologia , Receptores Purinérgicos P2X/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Técnicas de Patch-Clamp , Agonistas Purinérgicos/farmacologia , Antagonistas Purinérgicos/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Rana temporaria , Tionucleotídeos/farmacologia
3.
Mol Biol Cell ; 18(9): 3388-97, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17581860

RESUMO

Cystic fibrosis results from mutations in the cystic fibrosis conductance regulator protein (CFTR), a cAMP/protein kinase A (PKA) and ATP-regulated Cl(-) channel. CFTR is increasingly recognized as a component of multiprotein complexes and although several inhibitory proteins to CFTR have been identified, protein complexes that stimulate CFTR function remain less well characterized. We report that annexin 2 (anx 2)-S100A10 forms a functional cAMP/PKA/calcineurin (CaN)-dependent complex with CFTR. Cell stimulation with forskolin/3-isobutyl-1-methylxanthine significantly increases the amount of anx 2-S100A10 that reciprocally coimmunoprecipitates with cell surface CFTR and calyculin A. Preinhibition with PKA or CaN inhibitors attenuates the interaction. Furthermore, we find that the acetylated peptide (STVHEILCKLSLEG, Ac1-14), but not the nonacetylated equivalent N1-14, corresponding to the S100A10 binding site on anx 2, disrupts the anx 2-S100A10/CFTR complex. Analysis of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and CFTR(inh172)-sensitive currents, taken as indication of the outwardly rectifying Cl(-) channels (ORCC) and CFTR-mediated currents, respectively, showed that Ac1-14, but not N1-14, inhibits both the cAMP/PKA-dependent ORCC and CFTR activities. CaN inhibitors (cypermethrin, cyclosporin A) discriminated between ORCC/CFTR by inhibiting the CFTR(inh172)-, but not the DIDS-sensitive currents, by >70%. Furthermore, peptide Ac1-14 inhibited acetylcholine-induced short-circuit current measured across a sheet of intact intestinal biopsy. Our data suggests that the anx 2-S100A10/CFTR complex is important for CFTR function across epithelia.


Assuntos
Anexina A2/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas S100/metabolismo , Calcineurina/metabolismo , Linhagem Celular , Colforsina/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Humanos , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
4.
J Physiol ; 592(18): 3953-4, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25225258
5.
Cell Calcium ; 44(2): 147-57, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18187190

RESUMO

The formation of a heterotetrameric complex between annexin 2 (anx 2) and S100A10 plays an important role in regulating the cellular distribution and biochemical properties of anx 2. A major distinction between the anx 2-S100A10 complex and other annexin-S100 complexes is that S100A10 binding to anx 2 occurs independently of calcium. Here we describe a cyclic 3',5'-adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA, EC 2.7.1.37)-dependent mechanism regulating anx 2-S100A10 complex formation and its interaction with the transient receptor potential vanilloid type 6 channel (TRPV6) in airway and gut epithelia. In both 16HBE14o- and Caco-2 cells, forskolin (FSK) stimulated increased anx 2-S100A10 complex formation, which was attenuated by either PKA inhibitors or calcineurin A (CnA) inhibitors. The anx 2-S100A10 complex association with TRPV6 was dependent on FSK-induced CnA-dependent dephosphorylation of anx 2. Analysis of the significance of the cAMP/PKA/CnA pathway on calcium influx showed that both PKA and CnA inhibitors attenuated Ca(45) uptake in Caco-2, but not 16HBE14o-, cells. Thus, the cAMP/PKA/CnA-induced anx 2-S100A10/TRPV6 complex may require additional factors for calcium influx or play a role independent of calcium influx in airway epithelia. In conclusion, our data demonstrates that cAMP/PKA/CnA signalling is important for anx 2-S100A10 complex formation and interaction with target molecules in both absorptive and secretory epithelia.


Assuntos
Anexina A2/metabolismo , Calcineurina/fisiologia , Canais de Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/fisiologia , Sistema Respiratório/metabolismo , Proteínas S100/metabolismo , Canais de Cátion TRPV/metabolismo , Western Blotting , Células CACO-2 , Cálcio/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Epitélio/metabolismo , Humanos , Imunoprecipitação , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Respiratória , Sistema Respiratório/citologia , Transdução de Sinais/fisiologia
6.
PLoS One ; 11(3): e0149097, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26950439

RESUMO

Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Membrana Celular/metabolismo , Polaridade Celular , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Citosol/metabolismo , Células Epiteliais/citologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Nucleosídeo NM23 Difosfato Quinases/química , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Sistema Respiratório/citologia , Adulto Jovem
7.
PLoS One ; 6(11): e28166, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163264

RESUMO

BACKGROUND: TRPV6 ion channels are key mediators of regulated transepithelial absorption of Ca2+ within the small intestine. Trpv6-/- mice were reported to have lower bone density than wild-type littermates and significant disturbances in calcium homeostasis that suggested a role for TRPV6 in osteoblasts during bone formation and mineralization. TRPV6 and molecules related to transepithelial Ca2+ transport have been reported to be expressed at high levels in human and mouse osteoblasts. RESULTS: Transmembrane ion currents in whole cell patch clamped SaOS-2 osteoblasts did not show sensitivity to ruthenium red, an inhibitor of TRPV5/6 ion channels, and 45Ca uptake was not significantly affected by ruthenium red in either SaOS-2 (P=0.77) or TE-85 (P=0.69) osteoblastic cells. In contrast, ion currents and 45Ca uptake were both significantly affected in a human bronchial epithelial cell line known to express TRPV6. TRPV6 was expressed at lower levels in osteoblastic cells than has been reported in some literature. In SaOS-2 TRPV6 mRNA was below the assay detection limit; in TE-85 TRPV6 mRNA was detected at 6.90±1.9×10(-5) relative to B2M. In contrast, TRPV6 was detected at 7.7±3.0×10(-2) and 2.38±0.28×10(-4) the level of B2M in human carcinoma-derived cell lines LNCaP and CaCO-2 respectively. In murine primary calvarial osteoblasts TRPV6 was detected at 3.80±0.24×10(-5) relative to GAPDH, in contrast with 4.3±1.5×10(-2) relative to GAPDH in murine duodenum. By immunohistochemistry, TRPV6 was expressed mainly in myleocytic cells of the murine bone marrow and was observed only at low levels in murine osteoblasts, osteocytes or growth plate cartilage. CONCLUSIONS: TRPV6 is expressed only at low levels in osteoblasts and plays little functional role in osteoblastic calcium uptake.


Assuntos
Cálcio/farmacocinética , Perfilação da Expressão Gênica , Osteoblastos/metabolismo , Canais de Cátion TRPV/genética , Animais , Animais Recém-Nascidos , Células CACO-2 , Radioisótopos de Cálcio , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Imuno-Histoquímica , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rutênio Vermelho/farmacologia , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA