Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Funct Integr Genomics ; 23(1): 5, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534203

RESUMO

Corynebacterium striatum, a common constituent of the human skin microbiome, is now considered an emerging multidrug-resistant pathogen of immunocompromised and chronically ill patients. However, little is known about the molecular mechanisms in the transition from colonization to the multidrug-resistant (MDR) invasive phenotype in clinical isolates. This study performed a comprehensive pan-genomic analysis of C. striatum, including isolates from "normal skin microbiome" and from MDR infections, to gain insights into genetic factors contributing to pathogenicity and multidrug resistance in this species. For this, three novel genome sequences were obtained from clinical isolates of C. striatum of patients from Brazil, and other 24 complete or draft C. striatum genomes were retrieved from GenBank, including the ATCC6940 isolate from the Human Microbiome Project. Analysis of C. striatum strains demonstrated the presence of an open pan-genome (α = 0.852803) containing 3816 gene families, including 15 antimicrobial resistance (AMR) genes and 32 putative virulence factors. The core and accessory genomes included 1297 and 1307 genes, respectively. The identified AMR genes are primarily associated with resistance to aminoglycosides and tetracyclines. Of these, 66.6% are present in genomic islands, and four AMR genes, including aac(6')-ib7, are located in a class 1-integron. In conclusion, our data indicated that C. striatum possesses genomic characteristics favorable to the invasive phenotype, with high genomic plasticity, a robust genetic arsenal for iron acquisition, and important virulence determinants and AMR genes present in mobile genetic elements.


Assuntos
Antibacterianos , Corynebacterium , Humanos , Fenótipo , Fatores de Virulência/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
2.
Antonie Van Leeuwenhoek ; 108(3): 685-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149127

RESUMO

The appropriate choice of reference genes is essential for accurate normalization of gene expression data obtained by the method of reverse transcription quantitative real-time PCR (RT-qPCR). In 2009, a guideline called the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) highlighted the importance of the selection and validation of more than one suitable reference gene for obtaining reliable RT-qPCR results. Herein, we searched the recent literature in order to identify the bacterial reference genes that have been most commonly validated in gene expression studies by RT-qPCR (in the first 5 years following publication of the MIQE guidelines). Through a combination of different search parameters with the text mining tool MedlineRanker, we identified 145 unique bacterial genes that were recently tested as candidate reference genes. Of these, 45 genes were experimentally validated and, in most of the cases, their expression stabilities were verified using the software tools geNorm and NormFinder. It is noteworthy that only 10 of these reference genes had been validated in two or more of the studies evaluated. An enrichment analysis using Gene Ontology classifications demonstrated that genes belonging to the functional categories of DNA Replication (GO: 0006260) and Transcription (GO: 0006351) rendered a proportionally higher number of validated reference genes. Three genes in the former functional class were also among the top five most stable genes identified through an analysis of gene expression data obtained from the Pathosystems Resource Integration Center. These results may provide a guideline for the initial selection of candidate reference genes for RT-qPCR studies in several different bacterial species.


Assuntos
Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Genes Bacterianos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Bioestatística
3.
J Glob Antimicrob Resist ; 38: 181-186, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936471

RESUMO

Herein, we combined different bioinformatics tools and databases (BV-BRC, ResFinder, RAST, and KmerResistance) to perform a prediction of antimicrobial resistance (AMR) in the genomic sequences of 107 Corynebacterium striatum isolates for which trustable antimicrobial susceptibility (AST) phenotypes could be retrieved. Then, the reliabilities of the AMR predictions were evaluated by different metrics: area under the ROC curve (AUC); Major Error Rates (MERs) and Very Major Error Rates (VMERs); Matthews Correlation Coefficient (MCC); F1-Score; and Accuracy. Out of 15 genes that were reliably detected in the C. striatum isolates, only tetW yielded predictive values for tetracycline resistance that were acceptable considering Food and Drug Administration (FDA)'s criteria for quality (MER < 3.0% and VMER with a 95% C.I. ≤1.5-≤7.5); this was accompanied by a MCC score higher than 0.9 for this gene. Noteworthy, our results indicate that other commonly used metrics (AUC, F1-score, and Accuracy) may render overoptimistic evaluations of AMR-prediction reliabilities on imbalanced datasets. Accordingly, out of 10 genes tested by PCR on additional multidrug-resistant Corynebacterium spp. isolates (n = 18), the tetW gene rendered the best agreement values with AST profiles (94.11%). Overall, our results indicate that genome-based AMR prediction can still be challenging for MDR clinical isolates of emerging Corynebacterium spp.

4.
Front Microbiol ; 13: 1011578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466658

RESUMO

Corynebacterium amycolatum is a nonlipophilic coryneform which is increasingly being recognized as a relevant human and animal pathogen showing multidrug resistance to commonly used antibiotics. However, little is known about the molecular mechanisms involved in transition from colonization to the MDR invasive phenotype in clinical isolates. In this study, we performed a comprehensive pan-genomic analysis of C. amycolatum, including 26 isolates from different countries. We obtained the novel genome sequences of 8 of them, which are multidrug resistant clinical isolates from Spain and Tunisia. They were analyzed together with other 18 complete or draft C. amycolatum genomes retrieved from GenBank. The species C. amycolatum presented an open pan-genome (α = 0.854905), with 3,280 gene families, being 1,690 (51.52%) in the core genome, 1,121 related to accessory genes (34.17%), and 469 related to unique genes (14.29%). Although some classic corynebacterial virulence factors are absent in the species C. amycolatum, we did identify genes associated with immune evasion, toxin, and antiphagocytosis among the predicted putative virulence factors. Additionally, we found genomic evidence for extensive acquisition of antimicrobial resistance genes through genomic islands.

5.
Access Microbiol ; 3(2): 000197, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34151147

RESUMO

Corynebacterium spp. are Gram-positive rods that are recognized to cause opportunistic diseases under certain predisposing clinical conditions. Some species have been described in urinary tract infections. In this report we document a new episode of urinary tract infection caused by Corynebacterium phoceense and describe the whole-genome sequencing, phenotypic characteristics and mass spectra obtained by matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Based on genome identification and DNA-to-DNA hybridization, we can assume that our strain is the second isolate of C. phoceense to be described in a urine sample. No other infectious diseases have been reported to be associated with this species.

6.
J Infect ; 82(3): 399-406, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589297

RESUMO

BACKGROUND: There is growing concern about individuals reported to suffer repeat COVID-19 disease episodes, these in a small number of cases characterised as de novo infections with distinct sequences, indicative of insufficient protective immunity even in the short term. METHODS: Observational case series and case-control studies reporting 33 cases of recurrent, symptomatic, qRT-PCR positive COVID-19. Recurrent disease was defined as symptomatic recurrence after symptom-free clinical recovery, with release from isolation >14 days from the beginning of symptoms confirmed by qRT-PCR. The case control study-design compared this group of patients with a control group of 62 patients randomly selected from the same COVID-19 database. RESULTS: Of 33 recurrent COVID-19 patients, 26 were female and 30 were HCW. Mean time to recurrence was 50.5 days which was associated with being a HCW (OR 36.4 (p <0.0001)), and blood type A (OR 4.8 (p = 0.002)). SARS-CoV-2 antibodies were signifcantly lower in recurrent patients after initial COVID-19  (2.4 ±â€¯0.610; p<0.0001) and after recurrence (6.4 ±â€¯11.34; p = 0.007).  Virus genome sequencing identified reinfection by a different isolate in one patient. CONCLUSIONS: This is the first detailed case series showing COVID-19 recurrence with qRT-PCR positivity. For one individual detection of phylogenetically distinct genomic sequences in the first and second episodes confirmed bona fide renfection, but in most cases the data do not formally distinguish between reinfection and re-emergence of a chronic infection reservoir. These episodes were significantly associated with reduced Ab response during initial disease and argue the need for ongoing vigilance without an assumption of protection after a first episode.


Assuntos
COVID-19 , Pessoal de Saúde , Reinfecção , Brasil/epidemiologia , Estudos de Casos e Controles , Feminino , Humanos , SARS-CoV-2 , Índice de Gravidade de Doença
7.
Methods Mol Biol ; 2065: 119-137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31578692

RESUMO

Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) using fluorescent DNA-binding dyes is now a gold-standard methodology to study bacterial gene expression through relative quantitation of target mRNAs under specific experimental conditions, and recent developments in the technology allow for gene expression analysis in single cells. Nevertheless, several critical steps of the RT-qPCR protocol need to be carefully addressed in order to obtain reliable results, particularly regarding RNA sample quality and appropriate choice of reference genes. Besides, accurate reporting of study conditions is essential, as recommended by the MIQE guidelines. Herein, we provide a practical approach to quantitation of the transcript levels of bacterial genes using RT-qPCR, including a general protocol for obtaining good-quality bacterial RNA and a discussion on the selection and validation of candidate bacterial reference genes for data normalization.


Assuntos
Bactérias/genética , Perfilação da Expressão Gênica/métodos , Técnicas de Sonda Molecular/normas , RNA Bacteriano/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Corantes Fluorescentes/química , Perfilação da Expressão Gênica/normas , Regulação Bacteriana da Expressão Gênica , Genes Essenciais/genética , Guias como Assunto , Sondas Moleculares/química , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Reprodutibilidade dos Testes
8.
Antibiotics (Basel) ; 9(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668585

RESUMO

Corynebacterium urealyticum is a non-diphtherial urease-producing clinically relevant corynebacterial, most frequently involved in urinary tract infections. Most of the C. urealyticum clinical isolates are frequently resistant to several antibiotics. We investigated the susceptibility of 40 C. urealyticum isolated in our institution during the period 2005-2017 to eight compounds representative of the main clinically relevant classes of antimicrobial agents. Antimicrobial susceptibility was determined by the Epsilometer test. Resistance genes were searched by PCR. All strains were susceptible to vancomycin whereas linezolid and rifampicin also showed good activity (MICs90 = 1 and 0.4 mg/L, respectively). Almost all isolates (39/40, 97.5%) were multidrug resistant. The highest resistance rate was observed for ampicillin (100%), followed by erythromycin (95%) and levofloxacin (95%). Ampicillin resistance was associated with the presence of the blaA gene, encoding a class A ß-lactamase. The two rifampicin-resistant strains showed point mutations driving amino acid replacements in conserved residues of RNA polymerase subunit ß (RpoB). Tetracycline resistance was due to an efflux-mediated mechanism. Thirty-nine PFGE patterns were identified among the 40 C. urealyticum, indicating that they were not clonally related, but producing sporadic infections. These findings raise the need of maintaining surveillance strategies among this multidrug resistant pathogen.

9.
J Glob Antimicrob Resist ; 23: 16-19, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32777440

RESUMO

OBJECTIVES: Corynebacterium urealyticum is a non-diphtherial urease-producing clinically relevant corynebacterium associated with urinary tract infections. Most clinical C. urealyticum isolates are multidrug-resistant. Whole-genome sequencing (WGS) of C. urealyticum VH4248 isolated from a clinical urine sample at Hospital Universitario Marqués de Valdecilla, Santander, Spain, was performed to predict its antimicrobial resistance profile and to compare it with results of culture-based phenotypic antimicrobial susceptibility testing. METHODS: Classical microbiological methods and VITEK® MS were used for isolation and initial identification of strain VH4248. Draft genome sequencing was performed on an Illumina HiSeq 2500 platform, followed by assembly and annotation using SPAdes and RAST. Resistance genes were identified through PATRIC, the Pathosystems Resource Integration Center. Average nucleotide identity (ANI) analysis was done using the EDGAR and OrthoANI databases. Antimicrobial susceptibility was determined by Etest. RESULTS: Isolate VH4248 was initially identified asC. urealyticum. Its genome size is 2 261 231 bp with 64.4% GC content. Genome-based identification tools showed an average 93.7% similarity between VH4248 and C. urealyticum genomes deposited in public databases. Therefore, this isolate must be classified as Corynebacterium sp. The blaA and ermX genes as well as a class 1 integron including the aadB and sul1 genes are present in the VH4248 genome. This isolate is highly resistant to ampicillin, erythromycin and trimethoprim/sulfamethoxazole, and moderately resistant to gentamicin and kanamycin. CONCLUSIONS: WGS is a powerful tool forCorynebacterium identification to species level and for detection of unusual resistance determinants, such as that encoded by the class 1 integron in isolate VH4248.


Assuntos
Antibacterianos , Corynebacterium , Antibacterianos/farmacologia , Corynebacterium/genética , Testes de Sensibilidade Microbiana , Espanha
10.
J Virol Methods ; 282: 113888, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32445875

RESUMO

Herein, we describe the detection of a SARS-CoV-2 genome through metatranscriptome next-generation sequencing directly from the nasopharyngeal swab of a suspected case of local transmission of Covid-19, in Brazil. Depletion of human ribosomal RNA and use of an optimized in-house developed bioinformatics strategy contributed to successful detection of the virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA