RESUMO
This mini-review offers a comprehensive overview of the advancements made over the last three years in utilizing highly polar s-block organometallic reagents (specifically, RLi, RNa and RMgX compounds) in organic synthesis run under bench-type reaction conditions. These conditions involve exposure to air/moisture and are carried out at room temperature, with the use of sustainable solvents as reaction media. In the examples provided, the adoption of Deep Eutectic Solvents (DESs) or even water as non-conventional and protic reaction media has not only replicated the traditional chemistry of these organometallic reagents in conventional and toxic volatile organic compounds under Schlenk-type reaction conditions (typically involving low temperatures of -78 °C to 0 °C and a protective atmosphere of N2 or Ar), but has also resulted in higher conversions and selectivities within remarkably short reaction times (measured in s/min). Furthermore, the application of the aforementioned polar organometallics under bench-type reaction conditions (at room temperature/under air) has been extended to other environmentally responsible reaction media, such as more sustainable ethereal solvents (e.g., CPME or 2-MeTHF). Notably, this innovative approach contributes to enhancing the overall sustainability of s-block-metal-mediated organic processes, thereby aligning with several key principles of Green Chemistry.
RESUMO
Fast addition of highly polar organometallic reagents (RMgX/RLi) to cyclic carbonates (derived from CO2 as a sustainable C1 synthon) has been studied in 2-methyltetrahydrofuran as a green reaction medium or in the absence of external volatile organic solvents, at room temperature, and in the presence of air/moisture. These reaction conditions are generally forbidden with these highly reactive main-group organometallic compounds. The correct stoichiometry and nature of the polar organometallic alkylating or arylating reagent allows straightforward synthesis of: highly substituted tertiary alcohols, ß-hydroxy esters, or symmetric ketones, working always under air and at room temperature. Finally, an unprecedented one-pot/two-step hybrid protocol is developed through combination of an Al-catalyzed cycloaddition of CO2 and propylene oxide with the concomitant fast addition of RLi reagents to the inâ situ and transiently formed cyclic carbonate, thus allowing indirect conversion of CO2 into the desired highly substituted tertiary alcohols without need for isolation or purification of any reaction intermediates.
RESUMO
The self-assembly of styrene-type olefins into the corresponding stilbenes was conveniently performed in the Deep Eutectic Solvent (DES) mixture 1ChCl/2Gly under air and in the absence of hazardous organic co-solvents using a one-pot chemo-biocatalytic route. Here, an enzymatic decarboxylation of p-hydroxycinnamic acids sequentially followed by a ruthenium-catalyzed metathesis of olefins has been investigated in DES. Moreover, and to extend the design of chemoenzymatic processes in DESs, we also coupled the aforementioned enzymatic decarboxylation reaction to now concomitant Pd-catalyzed Heck-type C-C coupling to produce biaryl derivatives under environmentally friendly reaction conditions.
RESUMO
A tandem protocol to access tertiary alcohols has been developed which combines the organocatalytic oxidation of secondary alcohols to ketones followed by their chemoselective addition by several RLi reagents. Reactions take place at room temperature, under air and in aqueous solutions, a trio of conditions that are typically forbidden in polar organometallic chemistry.