Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144765

RESUMO

One of the most widely used molecules used for photodynamic therapy (PDT) is 5-aminolevulinic acid (5-ALA), a precursor in the synthesis of tetrapyrroles such as chlorophyll and heme. The 5-ALA skin permeation is considerably reduced due to its hydrophilic characteristics, decreasing its local bioavailability and therapeutic effect. For this reason, five different systems containing polymeric particles of poly [D, L-lactic-co-glycolic acid (PLGA)] were developed to encapsulate 5-ALA based on single and double emulsions methodology. All systems were standardized (according to the volume of reagents and mass of pharmaceutical ingredients) and compared in terms of laboratory scaling up, particle formation and stability over time. UV-VIS spectroscopy revealed that particle absorption/adsorption of 5-ALA was dependent on the method of synthesis. Different size distribution was observed by DLS and NTA techniques, revealing that 5-ALA increased the particle size. The contact angle evaluation showed that the system hydrophobicity was dependent on the surfactant and the 5-ALA contribution. The FTIR results indicated that the type of emulsion influenced the particle formation, as well as allowing PEG functionalization and interaction with 5-ALA. According to the 1H-NMR results, the 5-ALA reduced the T1 values of polyvinyl alcohol (PVA) and PLGA in the double emulsion systems due to the decrease in molecular packing in the hydrophobic region. The results indicated that the system formed by single emulsion containing the combination PVA-PEG presented greater stability with less influence from 5-ALA. This system is a promising candidate to successfully encapsulate 5-ALA and achieve good performance and specificity for in vitro skin cancer treatment.


Assuntos
Ácido Aminolevulínico , Ácido Poliglicólico , Clorofila , Emulsões , Heme , Ácido Láctico/química , Tamanho da Partícula , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Álcool de Polivinil/química , Tensoativos , Tetrapirróis
2.
Chem Phys Lipids ; 218: 22-33, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508514

RESUMO

The bioflavonoid quercetin may prevent magnetoliposomes oxidation, preserving their stability. In this work, the interaction between quercetin and asolectin-based magnetoliposomes was investigated by monitoring the hydration degree, vibrational, rotational and translational mobility parameters of the system as well as its thermodynamic properties. The efficiency of the encapsulation of maghemite magnetic nanoparticles was detected by high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). The magnetic behavior of the system was studied by vibrating sample magnetometry (VSM) technique. The size and surface charge of magnetoliposomes were detected by dynamic light scattering (DLS) and zeta potential (ζ-potential) measurements. The influence of quercetin on the physico-chemical parameters of the magnetoliposomes was evaluated by Fourier transform infrared spectroscopy (FTIR), 31P and 1H nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) techniques. In vitro antioxidant and antitumoral assays were also performed for the magnetoliposomes. An insertion of quercetin into magnetoliposomes reduced the efficiency of the encapsulation of maghemite nanoparticles by 11%, suggesting a significant interaction between flavonoid and nanoparticles in a specific region of the system. Quercetin discreetly decreased the saturation magnetization of magnetoliposomes, but did not affect the superparamagnetic behavior of the system. 31P and 1H NMR results showed that quercetin did not alter the inverted hexagonal system phase state but decreased lipid polar head mobility. The flavonoid also seems to reorient the choline group above the bilayer phosphate membrane plane, as indicated by ζ-potential system values. FTIR, NMR and DSC responses showed that quercetin disordered the carbonyl and the methylene regions of the magnetoliposomes. Quercetin, as the nanoparticles, seems to be located in the polar head regions of magnetoliposomes, ordering it and diminishing the lipid intermolecular communication in the membrane carbonyl and non-polar regions. The lipid peroxidation of the magnetoliposomes was prevented 8-fold by the presence of quercetin in the system. Also, the flavonoid was responsible for a 45% reduction in the viability of glioma cells. Location and interactions between quercetin and magnetoliposomes components were discussed in order to be correlated with the results of biological activity, contributing to the design of more stable and efficient magnetoliposomes to be applied as contrast and antitumoral agents.


Assuntos
Antioxidantes/química , Quercetina/química , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Físico-Química , Relação Dose-Resposta a Droga , Lipossomos/química , Campos Magnéticos , Estrutura Molecular , Quercetina/farmacologia , Ratos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA