Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Biol ; 18(4)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34114973

RESUMO

Many bacteria communicate using diffusible pheromone signals known as autoinducers. When the autoinducer concentration reaches a threshold, which requires a minimum population density or 'quorum', the bacteria activate specific gene regulatory pathways. Simple diffusion of autoinducer can activate quorum-dependent pathways in cells that are located at substantial distances from the secreting source. However, modeling has predicted that autoinducer diffusion, coupled with positive feedback regulation in autoinducer synthesis, could also allow a quorum-regulated behavior to spread more rapidly through a population by moving as a self-sustaining front at constant speed. Here we show that such propagation can occur in a population of bacteria whose quorum pathway operates under its own natural regulation. We find that in unstirred populations ofVibrio fischeri, introduction of autoinducer at one location triggers a wavelike traveling front of natural bioluminescence. The front moves with a well-defined speed ∼2.5 mm h-1, eventually outrunning the slower diffusional spreading of the initial stimulus. Consistent with predictions from modeling, the wave travels until late in growth, when population-wide activation occurs due to basal autoinducer production. Subsequent rounds of waves, including waves propagating in the reverse direction, can also be observed late in the growth ofV.fischeriunder natural regulation. Using an engineered,lac-dependent strain, we show that local stimuli other than autoinducers can also elicit a self-sustaining, propagating response. Our data show that the wavelike dynamics predicted by simple mathematical models of quorum signaling are readily detected in bacterial populations functioning under their own natural regulation, and that other, more complex traveling phenomena are also present. Because a traveling wave can substantially increase the efficiency of intercellular communication over macroscopic distances, our data indicate that very efficient modes of communication over distance are available to unmixed populations ofV.fischeriand other microbes.


Assuntos
Aliivibrio fischeri/fisiologia , Fenômenos Fisiológicos Bacterianos , Percepção de Quorum , Transdução de Sinais , Difusão , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados/fisiologia
2.
J Antimicrob Chemother ; 73(10): 2797-2805, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107601

RESUMO

Background: Why resistance to specific antibiotics emerges and spreads rapidly in some bacteria confronting these drugs but not others remains a mystery. Resistance to erythromycin in the respiratory pathogens Staphylococcus aureus and Streptococcus pneumoniae emerged rapidly and increased problematically. However, resistance is uncommon amongst the classic Bordetella species despite infections being treated with this macrolide for decades. Objectives: We examined whether the apparent progenitor of the classic Bordetella spp., Bordetella bronchiseptica, is able to rapidly generate de novo resistance to antibiotics and, if so, why such resistance might not persist and propagate. Methods: Independent strains of B. bronchiseptica resistant to erythromycin were generated in vitro by successively passaging them in increasing subinhibitory concentrations of this macrolide. Resistant mutants obtained were evaluated for their capacity to infect mice, and for other virulence properties including adherence, cytotoxicity and induction of cytokines. Results: B. bronchiseptica rapidly developed stable and persistent antibiotic resistance de novo. Unlike the previously reported trade-off in fitness, multiple independent resistant mutants were not defective in their rates of growth in vitro but were consistently defective in colonizing mice and lost a variety of virulence phenotypes. These changes rendered them avirulent but phenotypically similar to the previously described growth phase associated with the ability to survive in soil, water and/or other extra-mammalian environments. Conclusions: These observations raise the possibility that antibiotic resistance in some organisms results in trade-offs that are not quantifiable in routine measures of general fitness such as growth in vitro, but are pronounced in various aspects of infection in the natural host.


Assuntos
Antibacterianos/farmacologia , Infecções por Bordetella/microbiologia , Infecções por Bordetella/patologia , Bordetella bronchiseptica/efeitos dos fármacos , Bordetella bronchiseptica/patogenicidade , Farmacorresistência Bacteriana , Eritromicina/farmacologia , Animais , Aderência Bacteriana , Toxinas Bacterianas/metabolismo , Bordetella bronchiseptica/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos , Mutação , Seleção Genética , Inoculações Seriadas , Virulência
3.
Sci Rep ; 11(1): 19719, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611201

RESUMO

Many pheromone sensing bacteria produce and detect more than one chemically distinct signal, or autoinducer. The pathways that detect these signals are typically noisy and interlocked through crosstalk and feedback. As a result, the sensing response of individual cells is described by statistical distributions that change under different combinations of signal inputs. Here we examine how signal crosstalk reshapes this response. We measure how combinations of two homoserine lactone (HSL) input signals alter the statistical distributions of individual cell responses in the AinS/R- and LuxI/R-controlled branches of the Vibrio fischeri bioluminescence pathway. We find that, while the distributions of pathway activation in individual cells vary in complex fashion with environmental conditions, these changes have a low-dimensional representation. For both the AinS/R and LuxI/R branches, the distribution of individual cell responses to mixtures of the two HSLs is effectively one-dimensional, so that a single tuning parameter can capture the full range of variability in the distributions. Combinations of crosstalking HSL signals extend the range of responses for each branch of the circuit, so that signals in combination allow population-wide distributions that are not available under a single HSL input. Dimension reduction also simplifies the problem of identifying the HSL conditions to which the pathways and their outputs are most sensitive. A comparison of the maximum sensitivity HSL conditions to actual HSL levels measured during culture growth indicates that the AinS/R and LuxI/R branches lack sensitivity to population density except during the very earliest and latest stages of growth respectively.


Assuntos
Fenômenos Fisiológicos Bacterianos , Percepção de Quorum , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbiologia Ambiental , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Microscopia de Fluorescência
4.
Phys Rev E ; 101(6-1): 062421, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688581

RESUMO

Bacteria communicate by secreting and detecting diffusible small molecule signals or pheromones. Using the local concentrations of these signals to regulate gene expression, individual cells can synchronize changes in phenotype population-wide, a behavior known as quorum sensing (QS). In unstirred media, the interplay between diffusion of signals, bacterial growth, and regulatory feedback can generate complex spatial and temporal patterns of expression of QS-controlled genes. Here we identify the parameters that allow a local signal to trigger a self-sustaining, traveling activation of QS behavior. Using the natural bioluminescence of wild-type Vibrio fischeri as a readout of its lux QS system, we measure the induction of a spreading QS response by a localized triggering stimulus in unstirred media. Our data show that a QS response propagates outward, sustained by positive feedback in synthesis of the diffusible signal, and that this response occurs only if the triggering stimulus exceeds a critical threshold. We also test how the autonomous or untriggered activation of the V. fischeri QS pathway changes at very low initial population densities. At the lowest population densities, clusters of cells do not transition to a self-sensing behavior, but rather remain in communication via signal diffusion until they reach sufficiently large size that their own growth slows. Our data, which are reproduced by simple growth and diffusion simulations, indicate that in part owing to bacterial growth behavior, natural QS systems can be characterized by long distance communication through signal diffusion even in very heterogeneous and spatially dispersed populations.


Assuntos
Aliivibrio fischeri/citologia , Percepção de Quorum , Aliivibrio fischeri/crescimento & desenvolvimento , Retroalimentação Fisiológica , Medições Luminescentes , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA